論文の概要: Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
- arxiv url: http://arxiv.org/abs/2311.17059v2
- Date: Tue, 22 Apr 2025 02:38:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-01 05:16:39.938237
- Title: Mission-driven Exploration for Accelerated Deep Reinforcement Learning with Temporal Logic Task Specifications
- Title(参考訳): 時間論理タスク仕様を用いた深層強化学習のためのミッション駆動探索
- Authors: Jun Wang, Hosein Hasanbeig, Kaiyuan Tan, Zihe Sun, Yiannis Kantaros,
- Abstract要約: 本稿では,学習速度を大幅に向上させる新しいQ-ラーニングアルゴリズムを提案する。
サンプル効率の向上は、ミッションが成功に寄与する可能性のある方向への探索を優先する、ミッション駆動の探査戦略に由来する。
- 参考スコア(独自算出の注目度): 11.010530034121224
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the problem of designing control policies for agents with unknown stochastic dynamics and control objectives specified using Linear Temporal Logic (LTL). Recent Deep Reinforcement Learning (DRL) algorithms have aimed to compute policies that maximize the satisfaction probability of LTL formulas, but they often suffer from slow learning performance. To address this, we introduce a novel Deep Q-learning algorithm that significantly improves learning speed. The enhanced sample efficiency stems from a mission-driven exploration strategy that prioritizes exploration towards directions likely to contribute to mission success. Identifying these directions relies on an automaton representation of the LTL task as well as a learned neural network that partially models the agent-environment interaction. We provide comparative experiments demonstrating the efficiency of our algorithm on robot navigation tasks in unseen environments.
- Abstract(参考訳): 本稿では,LTL(Linear Temporal Logic)を用いて,未知の確率力学と制御目的を持つエージェントの制御ポリシー設計の問題に対処する。
近年のDeep Reinforcement Learning (DRL)アルゴリズムは,LTLの公式の満足度を最大化するポリシの計算を目標としているが,学習性能の低下に悩まされることも多い。
そこで本研究では,学習速度を大幅に向上させる新しいQ-ラーニングアルゴリズムを提案する。
サンプル効率の向上は、ミッションが成功に寄与する可能性のある方向への探索を優先する、ミッション駆動の探査戦略に由来する。
これらの方向を特定するには、LTLタスクのオートマトン表現と、エージェントと環境の相互作用を部分的にモデル化する学習ニューラルネットワークに依存する。
本研究では,ロボットナビゲーションタスクにおけるアルゴリズムの効率性を示す比較実験を行った。
関連論文リスト
- Exploiting Hybrid Policy in Reinforcement Learning for Interpretable Temporal Logic Manipulation [12.243491328213217]
強化学習(Reinforcement Learning, RL)に基づく手法は, ロボット学習においてますます研究されている。
本稿では,エージェントの性能向上のために3段階決定層を利用する時間論理誘導型ハイブリッドポリシーフレームワーク(HyTL)を提案する。
我々は,HyTLを4つの困難な操作タスクで評価し,その有効性と解釈可能性を示した。
論文 参考訳(メタデータ) (2024-12-29T03:34:53Z) - Sample-Efficient Reinforcement Learning with Temporal Logic Objectives: Leveraging the Task Specification to Guide Exploration [13.053013407015628]
本稿では,不確実な力学を持つシステムに対する最適制御ポリシーの学習問題に対処する。
本稿では,競争的アプローチよりもはるかに高速に制御ポリシーを学習できる高速化されたRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-10-16T00:53:41Z) - Directed Exploration in Reinforcement Learning from Linear Temporal Logic [59.707408697394534]
リニア時間論理(LTL)は強化学習におけるタスク仕様のための強力な言語である。
合成された報酬信号は基本的に疎結合であり,探索が困難であることを示す。
我々は、仕様をさらに活用し、それに対応するリミット決定性B"uchi Automaton(LDBA)をマルコフ報酬プロセスとしてキャストすることで、よりよい探索を実現することができることを示す。
論文 参考訳(メタデータ) (2024-08-18T14:25:44Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Logical Specifications-guided Dynamic Task Sampling for Reinforcement Learning Agents [9.529492371336286]
強化学習(Reinforcement Learning、RL)は、人工エージェントが多様な振る舞いを学習できるようにするために大きな進歩を遂げてきた。
論理仕様誘導動的タスクサンプリング(LSTS)と呼ばれる新しい手法を提案する。
LSTSは、エージェントを初期状態から目標状態へ誘導するRLポリシーのセットを、ハイレベルなタスク仕様に基づいて学習する。
論文 参考訳(メタデータ) (2024-02-06T04:00:21Z) - SERL: A Software Suite for Sample-Efficient Robotic Reinforcement
Learning [85.21378553454672]
筆者らは,報酬の計算と環境のリセットを行う手法とともに,効率的なオフ・ポリティクス・ディープ・RL法を含むライブラリを開発した。
我々は,PCBボードアセンブリ,ケーブルルーティング,オブジェクトの移動に関するポリシを,非常に効率的な学習を実現することができることを発見した。
これらの政策は完全な成功率またはほぼ完全な成功率、摂動下でさえ極端な堅牢性を実現し、突発的な堅牢性回復と修正行動を示す。
論文 参考訳(メタデータ) (2024-01-29T10:01:10Z) - Comparing Active Learning Performance Driven by Gaussian Processes or
Bayesian Neural Networks for Constrained Trajectory Exploration [0.0]
現在、人間は科学的な目的を達成するためにロボットを駆動しているが、ロボットの位置によっては、情報交換と駆動コマンドがミッション遂行に不適切な遅延を引き起こす可能性がある。
科学的目的と探索戦略で符号化された自律ロボットは、通信遅延を発生させず、ミッションをより迅速に達成することができる。
能動学習アルゴリズムは知的探索の能力を提供するが、その基盤となるモデル構造は、環境の理解を正確に形成する際に、能動学習アルゴリズムの性能を変化させる。
論文 参考訳(メタデータ) (2023-09-28T02:45:14Z) - Leveraging Sequentiality in Reinforcement Learning from a Single
Demonstration [68.94506047556412]
本稿では,複雑なロボットタスクの制御ポリシーを1つの実演で学習するために,シーケンシャルなバイアスを活用することを提案する。
本研究は, ヒューマノイド移動やスタンドアップなど, 模擬課題のいくつかを, 前例のないサンプル効率で解くことができることを示す。
論文 参考訳(メタデータ) (2022-11-09T10:28:40Z) - Exploration via Planning for Information about the Optimal Trajectory [67.33886176127578]
我々は,タスクと現在の知識を考慮に入れながら,探索を計画できる手法を開発した。
本手法は, 探索基準値よりも2倍少ないサンプルで, 強いポリシーを学習できることを実証する。
論文 参考訳(メタデータ) (2022-10-06T20:28:55Z) - Verifying Learning-Based Robotic Navigation Systems [61.01217374879221]
有効モデル選択に現代検証エンジンをどのように利用できるかを示す。
具体的には、検証を使用して、最適下行動を示す可能性のあるポリシーを検出し、除外する。
我々の研究は、現実世界のロボットにおける準最適DRLポリシーを認識するための検証バックエンドの使用を初めて実証したものである。
論文 参考訳(メタデータ) (2022-05-26T17:56:43Z) - Accelerated Reinforcement Learning for Temporal Logic Control Objectives [10.216293366496688]
本稿では,未知マルコフ決定過程(MDP)をモデル化した移動ロボットの学習制御ポリシーの問題に対処する。
本稿では,制御ポリシを関連手法よりもはるかに高速に学習可能な制御対象に対するモデルベース強化学習(RL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-09T17:09:51Z) - Skill-based Meta-Reinforcement Learning [65.31995608339962]
本研究では,長期的スパース・リワードタスクにおけるメタラーニングを実現する手法を提案する。
私たちの中核となる考え方は、メタ学習中にオフラインデータセットから抽出された事前経験を活用することです。
論文 参考訳(メタデータ) (2022-04-25T17:58:19Z) - Accelerated Policy Learning with Parallel Differentiable Simulation [59.665651562534755]
微分可能シミュレータと新しいポリシー学習アルゴリズム(SHAC)を提案する。
本アルゴリズムは,スムーズな批判機能により局所最小化の問題を軽減する。
現状のRLと微分可能なシミュレーションベースアルゴリズムと比較して,サンプル効率と壁面時間を大幅に改善した。
論文 参考訳(メタデータ) (2022-04-14T17:46:26Z) - Overcoming Exploration: Deep Reinforcement Learning in Complex
Environments from Temporal Logic Specifications [2.8904578737516764]
本稿では,大規模複雑な環境に展開する未知の連続時間ダイナミクスを有するタスク誘導型ロボットのためのDeep Reinforcement Learning (DRL)アルゴリズムを提案する。
本フレームワークは,大規模複雑な環境下での複雑なミッションをこなすロボットの性能(有効性,効率)を著しく向上させる。
論文 参考訳(メタデータ) (2022-01-28T16:39:08Z) - Accelerating Robotic Reinforcement Learning via Parameterized Action
Primitives [92.0321404272942]
強化学習は汎用ロボットシステムの構築に使用することができる。
しかし、ロボット工学の課題を解決するためにRLエージェントを訓練することは依然として困難である。
本研究では,ロボット行動プリミティブ(RAPS)のライブラリを手動で指定し,RLポリシーで学習した引数をパラメータ化する。
動作インターフェースへの簡単な変更は、学習効率とタスクパフォーマンスの両方を大幅に改善する。
論文 参考訳(メタデータ) (2021-10-28T17:59:30Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Learning to Track Dynamic Targets in Partially Known Environments [48.49957897251128]
我々は、アクティブな目標追跡を解決するために、深層強化学習アプローチを用いる。
特に,アクティブ・トラッカー・ターゲティング・ネットワーク(ATTN)を導入し,アクティブ・ターゲティング・ターゲティングの主要なタスクを解決するための統一的なRLポリシーを提案する。
論文 参考訳(メタデータ) (2020-06-17T22:45:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。