論文の概要: Vision-Based Deep Reinforcement Learning of UAV Autonomous Navigation Using Privileged Information
- arxiv url: http://arxiv.org/abs/2412.06313v1
- Date: Mon, 09 Dec 2024 09:05:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-10 14:56:19.403260
- Title: Vision-Based Deep Reinforcement Learning of UAV Autonomous Navigation Using Privileged Information
- Title(参考訳): 原始情報を用いたUAV自律ナビゲーションの視覚に基づく深層強化学習
- Authors: Junqiao Wang, Zhongliang Yu, Dong Zhou, Jiaqi Shi, Runran Deng,
- Abstract要約: DPRLは、部分的に観測可能な環境下での高速無人無人飛行の課題に対処するために設計されたエンドツーエンドのポリシーである。
非対称なアクター・クライブアーキテクチャを利用して、トレーニング中にエージェントに特権情報を提供する。
我々は、DPRLアルゴリズムを最先端のナビゲーションアルゴリズムと比較し、様々なシナリオにまたがって広範なシミュレーションを行う。
- 参考スコア(独自算出の注目度): 6.371251946803415
- License:
- Abstract: The capability of UAVs for efficient autonomous navigation and obstacle avoidance in complex and unknown environments is critical for applications in agricultural irrigation, disaster relief and logistics. In this paper, we propose the DPRL (Distributed Privileged Reinforcement Learning) navigation algorithm, an end-to-end policy designed to address the challenge of high-speed autonomous UAV navigation under partially observable environmental conditions. Our approach combines deep reinforcement learning with privileged learning to overcome the impact of observation data corruption caused by partial observability. We leverage an asymmetric Actor-Critic architecture to provide the agent with privileged information during training, which enhances the model's perceptual capabilities. Additionally, we present a multi-agent exploration strategy across diverse environments to accelerate experience collection, which in turn expedites model convergence. We conducted extensive simulations across various scenarios, benchmarking our DPRL algorithm against the state-of-the-art navigation algorithms. The results consistently demonstrate the superior performance of our algorithm in terms of flight efficiency, robustness and overall success rate.
- Abstract(参考訳): 複雑で未知の環境での効率的な自律航法と障害物回避のためのUAVの能力は、農業用灌水、災害救助および物流への応用に不可欠である。
本稿では,DPRL(Distributed Privileged Reinforcement Learning)ナビゲーションアルゴリズムを提案する。
本手法は, 部分観測可能性による観測データ破壊の影響を克服するために, 深層強化学習と特権学習を組み合わせたものである。
非対称なアクター・クライブアーキテクチャを利用して、トレーニング中に特権情報を提供する。
さらに,経験収集を促進するため,多様な環境をまたいだマルチエージェント探索戦略を提案し,モデル収束を高速化する。
我々は,DPRLアルゴリズムを最先端のナビゲーションアルゴリズムと比較し,様々なシナリオにまたがって広範なシミュレーションを行った。
その結果, 飛行効率, 堅牢性, 全体的な成功率の観点から, アルゴリズムの優れた性能を一貫して示すことができた。
関連論文リスト
- Evaluating Robustness of Reinforcement Learning Algorithms for Autonomous Shipping [2.9109581496560044]
本稿では,自律型海運シミュレータにおける内陸水路輸送(IWT)のために実装されたベンチマークディープ強化学習(RL)アルゴリズムのロバスト性について検討する。
モデルのないアプローチはシミュレーターで適切なポリシーを達成でき、訓練中に遭遇したことのないポート環境をナビゲートすることに成功した。
論文 参考訳(メタデータ) (2024-11-07T17:55:07Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - Variational Autoencoders for exteroceptive perception in reinforcement learning-based collision avoidance [0.0]
Deep Reinforcement Learning (DRL) は有望な制御フレームワークとして登場した。
現在のDRLアルゴリズムは、ほぼ最適ポリシーを見つけるために不均等な計算資源を必要とする。
本稿では,海洋制御システムにおける提案手法の総合的な探索について述べる。
論文 参考訳(メタデータ) (2024-03-31T09:25:28Z) - Deep Reinforcement Learning for Autonomous Vehicle Intersection
Navigation [0.24578723416255746]
強化学習アルゴリズムは、これらの課題に対処するための有望なアプローチとして登場した。
そこで本研究では,低コスト単一エージェントアプローチを用いて,T断面積を効率よく安全にナビゲートする問題に対処する。
提案手法により,AVはT断面積を効果的にナビゲートし,走行遅延,衝突最小化,総コストの面で従来の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2023-09-30T10:54:02Z) - CCE: Sample Efficient Sparse Reward Policy Learning for Robotic Navigation via Confidence-Controlled Exploration [72.24964965882783]
CCE (Confidence-Controlled Exploration) は、ロボットナビゲーションのようなスパース報酬設定のための強化学習アルゴリズムのトレーニングサンプル効率を高めるために設計された。
CCEは、勾配推定と政策エントロピーの間の新しい関係に基づいている。
我々は、CCEが一定軌跡長とエントロピー正規化を用いる従来の手法より優れるシミュレーションおよび実世界の実験を通して実証する。
論文 参考訳(メタデータ) (2023-06-09T18:45:15Z) - Visual-Language Navigation Pretraining via Prompt-based Environmental
Self-exploration [83.96729205383501]
本稿では,言語埋め込みの高速適応を実現するために,プロンプトベースの学習を導入する。
我々のモデルは、VLNやREVERIEを含む多様な視覚言語ナビゲーションタスクに適応することができる。
論文 参考訳(メタデータ) (2022-03-08T11:01:24Z) - Using Deep Reinforcement Learning with Automatic Curriculum earning for
Mapless Navigation in Intralogistics [0.7633618497843278]
本稿では,倉庫シナリオにおけるマップレスナビゲーション問題を解決するための深層強化学習手法を提案する。
自動誘導車両は、LiDARと前頭RGBセンサーを備え、目標のドームの下に到達することを学ぶ。
NavACL-Qは、学習プロセス全体を大幅に促進し、事前訓練された特徴抽出器は、トレーニング速度を顕著に向上させる。
論文 参考訳(メタデータ) (2022-02-23T13:50:01Z) - Benchmarking Safe Deep Reinforcement Learning in Aquatic Navigation [78.17108227614928]
本研究では,水文ナビゲーションに着目した安全強化学習のためのベンチマーク環境を提案する。
価値に基づく政策段階の深層強化学習(DRL)について考察する。
また,学習したモデルの振る舞いを所望の特性の集合上で検証する検証戦略を提案する。
論文 参考訳(メタデータ) (2021-12-16T16:53:56Z) - Human-Aware Robot Navigation via Reinforcement Learning with Hindsight
Experience Replay and Curriculum Learning [28.045441768064215]
強化学習アプローチは、シーケンシャルな意思決定問題を解決する優れた能力を示している。
本研究では,実演データを使わずにRLエージェントを訓練する作業を検討する。
密集層における最適なナビゲーションポリシーを効率的に学習するために,後視体験リプレイ(HER)とカリキュラム学習(CL)技術をRLに組み込むことを提案する。
論文 参考訳(メタデータ) (2021-10-09T13:18:11Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Data Freshness and Energy-Efficient UAV Navigation Optimization: A Deep
Reinforcement Learning Approach [88.45509934702913]
我々は、移動基地局(BS)が配備される複数の無人航空機(UAV)のナビゲーションポリシーを設計する。
我々は、地上BSにおけるデータの鮮度を確保するために、エネルギーや情報年齢(AoI)の制約などの異なる文脈情報を組み込んだ。
提案したトレーニングモデルを適用することで、UAV-BSに対する効果的なリアルタイム軌道ポリシーは、時間とともに観測可能なネットワーク状態をキャプチャする。
論文 参考訳(メタデータ) (2020-02-21T07:29:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。