論文の概要: Self-Attention for Incomplete Utterance Rewriting
- arxiv url: http://arxiv.org/abs/2202.12160v2
- Date: Sat, 26 Feb 2022 16:30:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-01 11:53:16.420654
- Title: Self-Attention for Incomplete Utterance Rewriting
- Title(参考訳): 不完全発話の書き直しに対する自己注意
- Authors: Yong Zhang, Zhitao Li, Jianzong Wang, Ning Cheng, Jing Xiao
- Abstract要約: 変圧器の自己アテンション重み行列からコア参照と省略関係を直接抽出する新しい手法を提案する。
本手法は,自己注意重み行列の豊富な情報から,公共IURデータセット上での競合的な結果を得た。
- 参考スコア(独自算出の注目度): 31.9403098330132
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Incomplete utterance rewriting (IUR) has recently become an essential task in
NLP, aiming to complement the incomplete utterance with sufficient context
information for comprehension. In this paper, we propose a novel method by
directly extracting the coreference and omission relationship from the
self-attention weight matrix of the transformer instead of word embeddings and
edit the original text accordingly to generate the complete utterance.
Benefiting from the rich information in the self-attention weight matrix, our
method achieved competitive results on public IUR datasets.
- Abstract(参考訳): incomplete utterance rewriting (iur) は近年,理解のための十分なコンテキスト情報を備えた不完全発話を補完する目的で,nlpにおいて不可欠なタスクとなっている。
本稿では,単語埋め込みの代わりに変圧器の自己注意重み行列からコア参照と省略関係を直接抽出し,その完全発話を生成するために原文を編集する手法を提案する。
本手法は,自己注意重み行列の豊富な情報から,公共IURデータセット上での競合結果を得た。
関連論文リスト
- Refining Sentence Embedding Model through Ranking Sentences Generation with Large Language Models [60.00178316095646]
多くのNLPタスクには文の埋め込みが不可欠であり、NLIのようなデータセットを使用して強いパフォーマンスを達成する対照的な学習方法がある。
近年の研究では、大きな言語モデル(LLM)を利用して文ペアを生成し、アノテーション依存を減らしている。
本稿では,潜在空間におけるLLMの生成方向を制御する手法を提案する。
複数のベンチマークによる実験により,本手法は文合成に要するコストを最小限に抑えつつ,新たなSOTA性能を実現することを示した。
論文 参考訳(メタデータ) (2025-02-19T12:07:53Z) - RSMLP: A light Sampled MLP Structure for Incomplete Utterance Rewrite [13.918498667158119]
本稿では,新しい軽量リライトサンプリング(RSMLP)手法を提案する。
RSMLPは、発話間の潜在意味情報を効果的に抽出し、発話を復元するために適切な編集を行う。
提案手法は,パブリックなIURデータセットや実世界のアプリケーション上での競合性能を実現する。
論文 参考訳(メタデータ) (2025-02-18T06:45:21Z) - Learning Task Representations from In-Context Learning [73.72066284711462]
大規模言語モデル(LLM)は、文脈内学習において顕著な習熟性を示している。
ICLプロンプトにおけるタスク情報をアテンションヘッドの関数として符号化するための自動定式化を導入する。
提案手法の有効性は,最後の隠れ状態の分布と最適に実行されたテキスト内学習モデルとの整合性に起因していることを示す。
論文 参考訳(メタデータ) (2025-02-08T00:16:44Z) - Multi-Granularity Information Interaction Framework for Incomplete
Utterance Rewriting [32.05944198256814]
Incomplete Utterance Rewriting (IUR)の最近のアプローチでは、重要な単語のソースをキャプチャできない。
本稿では,コンテキスト選択,編集行列の構成,関連性統合を含む,新しいマルチタスク情報インタラクションフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-19T08:43:02Z) - Factually Consistent Summarization via Reinforcement Learning with
Textual Entailment Feedback [57.816210168909286]
我々は,この問題を抽象的な要約システムで解くために,テキストエンテーメントモデルの最近の進歩を活用している。
我々は、事実整合性を最適化するために、レファレンスフリーのテキストエンターメント報酬を用いた強化学習を用いる。
自動測定と人的評価の両結果から,提案手法は生成した要約の忠実さ,サリエンス,簡潔さを著しく向上させることが示された。
論文 参考訳(メタデータ) (2023-05-31T21:04:04Z) - A General Contextualized Rewriting Framework for Text Summarization [15.311467109946571]
抽出文は比較的焦点が当てられているが、背景知識や談話の文脈が失われる可能性がある。
コンテントベースのアドレッシングによって抽出文を識別し、グループタグアライメントを施したSeq2seqとしてコンテクスト化された書き直しを形式化する。
その結果,本手法は強化学習を必要とせず,非コンテクスチュアライズされた書き換えシステムよりも優れていた。
論文 参考訳(メタデータ) (2022-07-13T03:55:57Z) - Contextualized Rewriting for Text Summarization [10.666547385992935]
グループアライメントを伴うSeq2seq問題として書き換える。
その結果,本手法は非テキスト化書き換えシステムよりも大幅に優れていることがわかった。
論文 参考訳(メタデータ) (2021-01-31T05:35:57Z) - Multi-Fact Correction in Abstractive Text Summarization [98.27031108197944]
Span-Factは、質問応答モデルから学んだ知識を活用して、スパン選択によるシステム生成サマリーの補正を行う2つの事実補正モデルのスイートである。
我々のモデルは、ソースコードのセマンティック一貫性を確保するために、反復的または自動回帰的にエンティティを置き換えるために、シングルまたはマルチマスキング戦略を採用している。
実験の結果,自動測定と人的評価の両面において,要約品質を犠牲にすることなく,システム生成要約の事実整合性を大幅に向上させることができた。
論文 参考訳(メタデータ) (2020-10-06T02:51:02Z) - Incomplete Utterance Rewriting as Semantic Segmentation [57.13577518412252]
本稿では, セマンティックセグメンテーションタスクとして定式化する, 斬新で広範囲なアプローチを提案する。
スクラッチから生成する代わりに、このような定式化は編集操作を導入し、単語レベルの編集行列の予測として問題を形作る。
私たちのアプローチは、推論における標準的なアプローチの4倍高速です。
論文 参考訳(メタデータ) (2020-09-28T09:29:49Z) - A Revised Generative Evaluation of Visual Dialogue [80.17353102854405]
本稿では,VisDialデータセットの改訂評価手法を提案する。
モデルが生成した回答と関連する回答の集合のコンセンサスを測定する。
DenseVisDialとして改訂された評価スキームのこれらのセットとコードをリリースする。
論文 参考訳(メタデータ) (2020-04-20T13:26:45Z) - Hybrid Attention-Based Transformer Block Model for Distant Supervision
Relation Extraction [20.644215991166902]
DSREタスクを実行するために,マルチインスタンス学習を用いたハイブリッドアテンションベースのトランスフォーマーブロックを用いた新しいフレームワークを提案する。
提案手法は評価データセットの最先端アルゴリズムより優れている。
論文 参考訳(メタデータ) (2020-03-10T13:05:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。