論文の概要: Towards an Accountable and Reproducible Federated Learning: A FactSheets
Approach
- arxiv url: http://arxiv.org/abs/2202.12443v1
- Date: Fri, 25 Feb 2022 00:34:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-28 14:13:38.623839
- Title: Towards an Accountable and Reproducible Federated Learning: A FactSheets
Approach
- Title(参考訳): アカウンタブルで再現可能なフェデレーションラーニングを目指して:FactSheetsアプローチ
- Authors: Nathalie Baracaldo, Ali Anwar, Mark Purcell, Ambrish Rawat, Mathieu
Sinn, Bashar Altakrouri, Dian Balta, Mahdi Sellami, Peter Kuhn, Ulrich
Schopp, Matthias Buchinger
- Abstract要約: フェデレートラーニング(FL)は、分散データとプライベートデータに基づくモデルの共有トレーニングのための新しいパラダイムである。
AF2 Frameworkを導入し、検証可能なクレームと暗黙の事実を融合することにより、FLを説明責任で実装する。
AIライフサイクルに透明性と信頼性を注入するためのAI FactSheetsを構築しています。
- 参考スコア(独自算出の注目度): 6.488712018186561
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a novel paradigm for the shared training of models
based on decentralized and private data. With respect to ethical guidelines, FL
is promising regarding privacy, but needs to excel vis-\`a-vis transparency and
trustworthiness. In particular, FL has to address the accountability of the
parties involved and their adherence to rules, law and principles. We introduce
AF^2 Framework, where we instrument FL with accountability by fusing verifiable
claims with tamper-evident facts, into reproducible arguments. We build on AI
FactSheets for instilling transparency and trustworthiness into the AI
lifecycle and expand it to incorporate dynamic and nested facts, as well as
complex model compositions in FL. Based on our approach, an auditor can
validate, reproduce and certify a FL process. This can be directly applied in
practice to address the challenges of AI engineering and ethics.
- Abstract(参考訳): フェデレートラーニング(FL)は、分散データとプライベートデータに基づくモデルの共有トレーニングのための新しいパラダイムである。
倫理的ガイドラインに関しては、FLはプライバシーを約束するが、透明性と信頼性を追求する必要がある。
特にFLは、関係する当事者の説明責任と、規則、法律、原則への遵守に対処しなければならない。
AF^2 Frameworkを導入し、検証可能な主張を暗黙の事実と融合して再現可能な議論を行う。
AIライフサイクルに透明性と信頼性を注入し、動的でネストされた事実やFLの複雑なモデル構成を組み込むように拡張するためのAI FactSheetsを構築しています。
このアプローチに基づいて、監査人はflプロセスを検証、再現、証明することができる。
これは、AIエンジニアリングと倫理の課題に対処するために、実践的に直接適用することができる。
関連論文リスト
- Privacy-Preserving Federated Learning via Dataset Distillation [9.60829979241686]
フェデレートラーニング(FL)では、生のデータの代わりに知識を共有することで、モデルのトレーニングを高精度に行うことができる。
トレーニング中、ユーザーは共有されている知識をコントロールできなくなり、データプライバシの深刻な問題を引き起こす。
FLトレーニングに最小特権(PoLP)の原則を導入することを目的としたFLiPを提案する。
論文 参考訳(メタデータ) (2024-10-25T13:20:40Z) - Federated Learning Priorities Under the European Union Artificial
Intelligence Act [68.44894319552114]
我々は、AI法がフェデレートラーニングに与える影響について、第一種学際分析(法とML)を行う。
データガバナンスの問題とプライバシに関する懸念について検討する。
最も注目すべきは、データのバイアスを防御し、プライベートでセキュアな計算を強化する機会である。
論文 参考訳(メタデータ) (2024-02-05T19:52:19Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - Fair Differentially Private Federated Learning Framework [0.0]
Federated Learning(FL)は、参加者が個々のデータセットを共有することなく、協力し、共有モデルをトレーニングすることのできる、分散機械学習戦略である。
FLではプライバシと公平性が重要な考慮事項である。
本稿では、検証データなしで公正なグローバルモデルを作成し、グローバルなプライベートディファレンシャルモデルを作成するという課題に対処する枠組みを提案する。
論文 参考訳(メタデータ) (2023-05-23T09:58:48Z) - FederatedTrust: A Solution for Trustworthy Federated Learning [3.202927443898192]
IoT(Internet of Things)の急速な拡張により、中央集権型機械学習(ML/DL)メソッドの課題が提示された。
データプライバシに関する懸念に対処するため、フェデレートラーニング(FL)のような、協調的でプライバシ保護のML/DL技術が登場した。
論文 参考訳(メタデータ) (2023-02-20T09:02:24Z) - VeriFi: Towards Verifiable Federated Unlearning [59.169431326438676]
フェデレートラーニング(FL)は、参加者がプライベートデータを共有せずに強力なモデルを共同でトレーニングする、協調学習パラダイムである。
参加者を去るには、グローバルモデルからプライベートデータを削除するよう要求する権利がある。
フェデレートされた未学習と検証を統合した統合フレームワークであるVeriFiを提案する。
論文 参考訳(メタデータ) (2022-05-25T12:20:02Z) - Federated Learning from Only Unlabeled Data with
Class-Conditional-Sharing Clients [98.22390453672499]
Supervised Federated Learning (FL)は、複数のクライアントがラベル付きデータを共有せずにトレーニングされたモデルを共有することを可能にする。
本研究では,教師なし学習(FedUL)のフェデレーションを提案し,各クライアントのラベル付きデータにラベル付きデータを変換する。
論文 参考訳(メタデータ) (2022-04-07T09:12:00Z) - Towards Verifiable Federated Learning [15.758657927386263]
Federated Learning(FL)は、強力なモデルを構築しながらユーザのプライバシを保存する、コラボレーション機械学習の新たなパラダイムである。
自己関心のある団体によるオープンな参加の性質から、FLは正当なFL参加者による潜在的な不適切な行動から守らなければならない。
検証可能なフェデレーション学習は、学界や業界からも大きな関心を集めている研究の新たな話題となっている。
論文 参考訳(メタデータ) (2022-02-15T09:52:25Z) - Fairness, Integrity, and Privacy in a Scalable Blockchain-based
Federated Learning System [0.0]
フェデレートされた機械学習(FL)では、クライアントのモデルのみとして、センシティブなデータ上でモデルを集合的にトレーニングすることが可能で、トレーニングデータを共有する必要がなくなる。
FLの研究が注目されているにもかかわらず、この概念はいまだに広く採用されていない。
本稿では,ブロックチェーン技術,ローカルディファレンシャルプライバシ,ゼロ知識証明を組み込んだFLシステムを提案する。
論文 参考訳(メタデータ) (2021-11-11T16:08:44Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
フェデレートラーニング(FL)は、生データを共有することなく、参加するユーザのセットから学習する、人気のある分散ラーニングスキーマとして登場した。
敵対的トレーニング(AT)は集中学習のための健全なソリューションを提供する。
既存のFL技術では,非IDユーザ間の対向的ロバスト性を効果的に広めることができないことを示す。
本稿では, バッチ正規化統計量を用いてロバスト性を伝達する, 単純かつ効果的な伝搬法を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:52:33Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。