論文の概要: Towards Verifiable Federated Learning
- arxiv url: http://arxiv.org/abs/2202.08310v1
- Date: Tue, 15 Feb 2022 09:52:25 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-19 07:31:53.017862
- Title: Towards Verifiable Federated Learning
- Title(参考訳): フェデレーション学習の検証に向けて
- Authors: Yanci Zhang and Han Yu
- Abstract要約: Federated Learning(FL)は、強力なモデルを構築しながらユーザのプライバシを保存する、コラボレーション機械学習の新たなパラダイムである。
自己関心のある団体によるオープンな参加の性質から、FLは正当なFL参加者による潜在的な不適切な行動から守らなければならない。
検証可能なフェデレーション学習は、学界や業界からも大きな関心を集めている研究の新たな話題となっている。
- 参考スコア(独自算出の注目度): 15.758657927386263
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is an emerging paradigm of collaborative machine
learning that preserves user privacy while building powerful models.
Nevertheless, due to the nature of open participation by self-interested
entities, it needs to guard against potential misbehaviours by legitimate FL
participants. FL verification techniques are promising solutions for this
problem. They have been shown to effectively enhance the reliability of FL
networks and help build trust among participants. Verifiable federated learning
has become an emerging topic of research that has attracted significant
interest from the academia and the industry alike. Currently, there is no
comprehensive survey on the field of verifiable federated learning, which is
interdisciplinary in nature and can be challenging for researchers to enter
into. In this paper, we bridge this gap by reviewing works focusing on
verifiable FL. We propose a novel taxonomy for verifiable FL covering both
centralised and decentralised FL settings, summarise the commonly adopted
performance evaluation approaches, and discuss promising directions towards a
versatile verifiable FL framework.
- Abstract(参考訳): Federated Learning(FL)は、強力なモデルを構築しながらユーザのプライバシを保存する、コラボレーション機械学習の新たなパラダイムである。
それにもかかわらず、自己関心のある団体によるオープンな参加の性質から、正当なFL参加者による潜在的な不行を防げる必要がある。
fl検証技術はこの問題に対する有望な解決策である。
FLネットワークの信頼性を効果的に向上し、参加者間の信頼構築を支援することが示されている。
検証可能なフェデレーション学習は、学界や業界からも大きな関心を集めている研究の新たな話題となっている。
現在、検証可能な連合学習の分野に関する総合的な調査は存在せず、これは学際的であり、研究者が参入するのは難しい。
本稿では、このギャップを検証FLに焦点を当てた作業の見直しにより埋める。
本稿では,集中型および分散型fl設定をカバーする検証可能flの新たな分類法を提案し,一般的に採用されている性能評価手法を要約し,汎用的な検証可能なflフレームワークに向けた有望な方向性について考察する。
関連論文リスト
- SoK: Challenges and Opportunities in Federated Unlearning [32.0365189539138]
本論文は、この新興分野における研究動向と課題を特定することを目的として、未学習の未学習文学を深く研究することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T19:35:08Z) - FedCompetitors: Harmonious Collaboration in Federated Learning with
Competing Participants [41.070716405671206]
フェデレートラーニング(FL)は、機械学習モデルの協調トレーニングのためのプライバシ保護アプローチを提供する。
データ補完性に基づいて各FL参加者に対して適切な協力者を選択することが重要である。
一部のFL-PTが競合するFL-PT間の個人間関係を考えることは必須である。
論文 参考訳(メタデータ) (2023-12-18T17:53:01Z) - A Survey of Federated Unlearning: A Taxonomy, Challenges and Future
Directions [71.16718184611673]
プライバシ保護のためのフェデレートラーニング(FL)の進化により、忘れられる権利を実装する必要性が高まっている。
選択的な忘れ方の実装は、その分散した性質のため、FLでは特に困難である。
Federated Unlearning(FU)は、データプライバシの必要性の増加に対応する戦略的ソリューションとして登場した。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Trustworthy Federated Learning: A Survey [0.5089078998562185]
人工知能(AI)分野において、フェデレートラーニング(FL)が大きな進歩を遂げている。
我々は、Trustworthy FLの現状を概観し、既存のソリューションとTrustworthyに関連する明確に定義された柱を探求する。
本稿では,解釈可能性,公正性,セキュリティとプライバシの3つの柱を含む分類法を提案する。
論文 参考訳(メタデータ) (2023-05-19T09:11:26Z) - Bayesian Federated Learning: A Survey [54.40136267717288]
フェデレートラーニング(FL)は、分散インフラストラクチャ、コミュニケーション、コンピューティング、学習をプライバシ保護の方法で統合する際の利点を示している。
既存のFL手法のロバスト性と能力は、制限された動的データと条件によって挑戦される。
BFLはこれらの問題に対処するための有望なアプローチとして登場した。
論文 参考訳(メタデータ) (2023-04-26T03:41:17Z) - Towards Interpretable Federated Learning [19.764172768506132]
フェデレートラーニング(FL)は、複数のデータ所有者が、プライベートなローカルデータを公開せずに、協調して機械学習モデルを構築することを可能にする。
特に金融や医療といったミッションクリティカルなアプリケーションにおいて、パフォーマンス、プライバシ保護、解釈可能性の必要性のバランスをとることが重要です。
我々は、代表的IFL手法、一般的に採用されている性能評価指標、多目的IFL技術構築に向けた有望な方向性を包括的に分析する。
論文 参考訳(メタデータ) (2023-02-27T02:06:18Z) - VeriFi: Towards Verifiable Federated Unlearning [59.169431326438676]
フェデレートラーニング(FL)は、参加者がプライベートデータを共有せずに強力なモデルを共同でトレーニングする、協調学習パラダイムである。
参加者を去るには、グローバルモデルからプライベートデータを削除するよう要求する権利がある。
フェデレートされた未学習と検証を統合した統合フレームワークであるVeriFiを提案する。
論文 参考訳(メタデータ) (2022-05-25T12:20:02Z) - FedComm: Federated Learning as a Medium for Covert Communication [56.376997104843355]
フェデレートラーニング(FL)は、ディープラーニングの採用に伴うプライバシーへの影響を軽減するためのソリューションである。
本稿では,FL方式の通信能力について詳しく検討する。
我々は,新しいマルチシステム被覆通信技術であるFedCommを紹介する。
論文 参考訳(メタデータ) (2022-01-21T17:05:56Z) - Towards Fairness-Aware Federated Learning [19.73772410934193]
本稿では,フェデレートラーニングの大きなステップをカバーするFairness-Aware Federated Learning (FAFL) アプローチの分類法を提案する。
FAFLアプローチの性能を実験的に評価するための主要な指標について論じる。
論文 参考訳(メタデータ) (2021-11-02T20:20:28Z) - Federated Robustness Propagation: Sharing Adversarial Robustness in
Federated Learning [98.05061014090913]
フェデレートラーニング(FL)は、生データを共有することなく、参加するユーザのセットから学習する、人気のある分散ラーニングスキーマとして登場した。
敵対的トレーニング(AT)は集中学習のための健全なソリューションを提供する。
既存のFL技術では,非IDユーザ間の対向的ロバスト性を効果的に広めることができないことを示す。
本稿では, バッチ正規化統計量を用いてロバスト性を伝達する, 単純かつ効果的な伝搬法を提案する。
論文 参考訳(メタデータ) (2021-06-18T15:52:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。