論文の概要: ATR-Bench: A Federated Learning Benchmark for Adaptation, Trust, and Reasoning
- arxiv url: http://arxiv.org/abs/2505.16850v1
- Date: Thu, 22 May 2025 16:11:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-23 17:12:48.442692
- Title: ATR-Bench: A Federated Learning Benchmark for Adaptation, Trust, and Reasoning
- Title(参考訳): ATR-Bench: 適応、信頼、推論のためのフェデレーションラーニングベンチマーク
- Authors: Tajamul Ashraf, Mohammed Mohsen Peerzada, Moloud Abdar, Yutong Xie, Yuyin Zhou, Xiaofeng Liu, Iqra Altaf Gillani, Janibul Bashir,
- Abstract要約: 本稿では,適応,信頼,推論という3つの基礎的な側面を通じて,連合学習を統一的に分析する枠組みを導入する。
ATR-Benchは、実世界の関連性を持つ連邦学習の体系的・包括的評価の基礎を築いている。
- 参考スコア(独自算出の注目度): 21.099779419619345
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) has emerged as a promising paradigm for collaborative model training while preserving data privacy across decentralized participants. As FL adoption grows, numerous techniques have been proposed to tackle its practical challenges. However, the lack of standardized evaluation across key dimensions hampers systematic progress and fair comparison of FL methods. In this work, we introduce ATR-Bench, a unified framework for analyzing federated learning through three foundational dimensions: Adaptation, Trust, and Reasoning. We provide an in-depth examination of the conceptual foundations, task formulations, and open research challenges associated with each theme. We have extensively benchmarked representative methods and datasets for adaptation to heterogeneous clients and trustworthiness in adversarial or unreliable environments. Due to the lack of reliable metrics and models for reasoning in FL, we only provide literature-driven insights for this dimension. ATR-Bench lays the groundwork for a systematic and holistic evaluation of federated learning with real-world relevance. We will make our complete codebase publicly accessible and a curated repository that continuously tracks new developments and research in the FL literature.
- Abstract(参考訳): フェデレートラーニング(FL)は、分散された参加者間でデータのプライバシを保持しながら、協調的なモデルトレーニングのための有望なパラダイムとして登場した。
FLの採用が進むにつれて、その実践的な課題に取り組むために多くの技術が提案されている。
しかし、鍵次元の標準化された評価の欠如は、体系的な進歩とFL法の公正な比較を妨げている。
本研究では,適応,信頼,推論という3つの基礎的な側面を通じて,連合学習を解析するための統合フレームワークであるATR-Benchを紹介する。
本稿では,概念の基礎,課題の定式化,各テーマに関連するオープンな研究課題について詳細に検討する。
我々は、異種クライアントへの適応と、敵対的、信頼できない環境における信頼性のための代表的手法とデータセットを広範囲にベンチマークした。
FLにおける推論のための信頼性の高いメトリクスとモデルが欠如しているため、我々はこの次元に対して文献駆動の洞察しか提供しない。
ATR-Benchは、実世界の関連性を持つ連邦学習の体系的・包括的評価の基礎を築いている。
完全なコードベースを公開し、FL文学における新しい開発と研究を継続的に追跡するキュレートされたリポジトリを作ります。
関連論文リスト
- FedEGG: Federated Learning with Explicit Global Guidance [90.04705121816185]
フェデレートラーニング(FL)は、そのプライバシー保護の性質から、多様なアプリケーションにとって大きな可能性を秘めている。
既存の手法は、最適化ベースのクライアント制約、適応的なクライアント選択、事前訓練されたモデルや合成データの使用によってこれらの課題に対処するのに役立つ。
我々はbftextFedEGGを提案する。bftextFedEGGは、よく定義された、容易に収束できる学習タスクを用いて、グローバルガイドタスクを構築する新しいFLアルゴリズムである。
論文 参考訳(メタデータ) (2024-04-18T04:25:21Z) - A Survey on Federated Unlearning: Challenges and Opportunities [32.0365189539138]
本論文は、この新興分野における研究動向と課題を特定することを目的として、未学習の未学習文学を深く研究することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T19:35:08Z) - Exploring Federated Unlearning: Review, Comparison, and Insights [101.64910079905566]
フェデレーション・アンラーニングは、フェデレーション・システムで訓練されたモデルからデータを選択的に除去することを可能にする。
本稿では,既存のフェデレーション・アンラーニング手法について検討し,アルゴリズムの効率,モデル精度への影響,プライバシ保護の有効性について検討する。
フェデレートされたアンラーニング手法を評価するための統一ベンチマークであるOpenFederatedUnlearningフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-30T01:34:33Z) - A Survey for Federated Learning Evaluations: Goals and Measures [26.120949005265345]
フェデレートラーニング(Federated Learning, FL)は、プライバシ保護機械学習のための新しいパラダイムである。
FLの評価は、その学際的な性質と、実用性、効率性、セキュリティといった様々な目標のために難しい。
我々はFLアルゴリズムの標準化された総合的な評価フレームワークを提供するオープンソースプラットフォームであるFedEvalを紹介した。
論文 参考訳(メタデータ) (2023-08-23T00:17:51Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
本研究では,従来の深層学習ネットワークの代わりにDeep Equilibrium(DEQ)モデルを用いて,フェデレートラーニング(FL)問題について検討する。
我々は、DECモデルをフェデレート学習フレームワークに組み込むことで、FLのいくつかのオープンな問題に自然に対処できると主張している。
我々の知る限りでは、この研究は、DECモデルとフェデレーションラーニングの関連性を確立する最初のものである。
論文 参考訳(メタデータ) (2023-05-29T22:51:40Z) - Trustworthy Federated Learning: A Survey [0.5089078998562185]
人工知能(AI)分野において、フェデレートラーニング(FL)が大きな進歩を遂げている。
我々は、Trustworthy FLの現状を概観し、既存のソリューションとTrustworthyに関連する明確に定義された柱を探求する。
本稿では,解釈可能性,公正性,セキュリティとプライバシの3つの柱を含む分類法を提案する。
論文 参考訳(メタデータ) (2023-05-19T09:11:26Z) - Towards Verifiable Federated Learning [15.758657927386263]
Federated Learning(FL)は、強力なモデルを構築しながらユーザのプライバシを保存する、コラボレーション機械学習の新たなパラダイムである。
自己関心のある団体によるオープンな参加の性質から、FLは正当なFL参加者による潜在的な不適切な行動から守らなければならない。
検証可能なフェデレーション学習は、学界や業界からも大きな関心を集めている研究の新たな話題となっている。
論文 参考訳(メタデータ) (2022-02-15T09:52:25Z) - RoFL: Attestable Robustness for Secure Federated Learning [59.63865074749391]
フェデレートラーニング(Federated Learning)により、多数のクライアントが、プライベートデータを共有することなく、ジョイントモデルをトレーニングできる。
クライアントのアップデートの機密性を保証するため、フェデレートラーニングシステムはセキュアなアグリゲーションを採用している。
悪意のあるクライアントに対する堅牢性を向上させるセキュアなフェデレート学習システムであるRoFLを提案する。
論文 参考訳(メタデータ) (2021-07-07T15:42:49Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。