Learning to Design Analog Circuits to Meet Threshold Specifications
- URL: http://arxiv.org/abs/2307.13861v1
- Date: Tue, 25 Jul 2023 23:25:05 GMT
- Title: Learning to Design Analog Circuits to Meet Threshold Specifications
- Authors: Dmitrii Krylov, Pooya Khajeh, Junhan Ouyang, Thomas Reeves, Tongkai
Liu, Hiba Ajmal, Hamidreza Aghasi, Roy Fox
- Abstract summary: We propose a method for generating from simulation data a dataset on which a system can be trained to design circuits to meet threshold specifications.
We show that our method consistently reaches success rate better than 90% at 5% error margin, while also improving data efficiency by upward of an order of magnitude.
- Score: 2.5818330243826924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated design of analog and radio-frequency circuits using supervised or
reinforcement learning from simulation data has recently been studied as an
alternative to manual expert design. It is straightforward for a design agent
to learn an inverse function from desired performance metrics to circuit
parameters. However, it is more common for a user to have threshold performance
criteria rather than an exact target vector of feasible performance measures.
In this work, we propose a method for generating from simulation data a dataset
on which a system can be trained via supervised learning to design circuits to
meet threshold specifications. We moreover perform the to-date most extensive
evaluation of automated analog circuit design, including experimenting in a
significantly more diverse set of circuits than in prior work, covering linear,
nonlinear, and autonomous circuit configurations, and show that our method
consistently reaches success rate better than 90% at 5% error margin, while
also improving data efficiency by upward of an order of magnitude. A demo of
this system is available at circuits.streamlit.app
Related papers
- LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - Finding Transformer Circuits with Edge Pruning [71.12127707678961]
We propose Edge Pruning as an effective and scalable solution to automated circuit discovery.
Our method finds circuits in GPT-2 that use less than half the number of edges compared to circuits found by previous methods.
Thanks to its efficiency, we scale Edge Pruning to CodeLlama-13B, a model over 100x the scale that prior methods operate on.
arXiv Detail & Related papers (2024-06-24T16:40:54Z) - AnalogCoder: Analog Circuit Design via Training-Free Code Generation [28.379045024642668]
We introduce AnalogCoder, the first training-free Large Language Models agent for designing analog circuits.
It incorporates a feedback-enhanced flow with tailored domain-specific prompts, enabling the automated and self-correcting design of analog circuits.
It has successfully designed 20 circuits, 5 more than standard GPT-4o.
arXiv Detail & Related papers (2024-05-23T17:13:52Z) - Machine Learning Driven Global Optimisation Framework for Analog Circuit Design [0.0]
We propose a machine learning-driven optimisation framework for analog circuit design.
We employ machine learning models and spice simulations to direct the optimisation algorithm.
arXiv Detail & Related papers (2024-02-27T03:51:00Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - Domain Knowledge-Infused Deep Learning for Automated
Analog/Radio-Frequency Circuit Parameter Optimization [6.599793419469274]
This paper presents a reinforcement learning method to automate the analog circuit parameter optimization.
It is inspired by human experts who rely on domain knowledge of analog circuit design.
Experimental results on exemplary circuits show it achieves human-level design accuracy (99%) 1.5X efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-04-27T13:58:51Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Domain Knowledge-Based Automated Analog Circuit Design with Deep
Reinforcement Learning [6.599793419469274]
This paper presents a deep reinforcement learning method to expedite the design of analog circuits.
Experimental results show it achieves human-level design accuracy (99%) with 1.5x efficiency of existing best-performing methods.
arXiv Detail & Related papers (2022-02-26T16:56:45Z) - Ranking Cost: Building An Efficient and Scalable Circuit Routing Planner
with Evolution-Based Optimization [49.207538634692916]
We propose a new algorithm for circuit routing, named Ranking Cost, to form an efficient and trainable router.
In our method, we introduce a new set of variables called cost maps, which can help the A* router to find out proper paths.
Our algorithm is trained in an end-to-end manner and does not use any artificial data or human demonstration.
arXiv Detail & Related papers (2021-10-08T07:22:45Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
We propose a deep detector entitled LoRD-Net for recovering information symbols from one-bit measurements.
LoRD-Net has a task-based architecture dedicated to recovering the underlying signal of interest.
We evaluate the proposed receiver architecture for one-bit signal recovery in wireless communications.
arXiv Detail & Related papers (2021-02-05T04:26:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.