論文の概要: A Proximal Algorithm for Sampling
- arxiv url: http://arxiv.org/abs/2202.13975v3
- Date: Fri, 30 Jun 2023 23:06:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-04 16:28:34.765993
- Title: A Proximal Algorithm for Sampling
- Title(参考訳): サンプリングのための近似アルゴリズム
- Authors: Jiaming Liang, Yongxin Chen
- Abstract要約: 我々は、滑らかさに欠けるポテンシャルに関連する問題を研究する。
ポテンシャルは凸か非滑らかである。
本アルゴリズムは, 拒絶サンプリングの特殊な事例に基づく。
- 参考スコア(独自算出の注目度): 14.909442791255042
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study sampling problems associated with potentials that lack smoothness.
The potentials can be either convex or non-convex. Departing from the standard
smooth setting, the potentials are only assumed to be weakly smooth or
non-smooth, or the summation of multiple such functions. We develop a sampling
algorithm that resembles proximal algorithms in optimization for this
challenging sampling task. Our algorithm is based on a special case of Gibbs
sampling known as the alternating sampling framework (ASF). The key
contribution of this work is a practical realization of the ASF based on
rejection sampling for both non-convex and convex potentials that are not
necessarily smooth. In almost all the cases of sampling considered in this
work, our proximal sampling algorithm achieves better complexity than all
existing methods.
- Abstract(参考訳): 滑らかさに欠ける電位に関連するサンプリング問題について検討する。
ポテンシャルは凸か非凸である。
標準的な滑らかな設定から外れると、ポテンシャルは弱滑らかか非スムースか、あるいは複数の関数の和であると仮定される。
我々は,この難解なサンプリングタスクの最適化において,近位アルゴリズムに類似したサンプリングアルゴリズムを開発した。
本アルゴリズムは,交代サンプリングフレームワーク (asf) として知られるギブスサンプリングの特別な場合に基づいている。
この研究の重要な貢献は、必ずしも滑らかでない非凸ポテンシャルと凸ポテンシャルの両方に対する拒絶サンプリングに基づくasfの実践的実現である。
この研究で考慮されたサンプリングのほとんど全てのケースにおいて、我々の近位サンプリングアルゴリズムは、既存の全ての方法よりもより良い複雑さを達成する。
関連論文リスト
- Proximal Oracles for Optimization and Sampling [18.77973093341588]
非滑らかな目的関数による凸最適化と非滑らかなポテンシャルによる対数凹型サンプリングについて検討する。
非滑らか性による課題を克服するため、アルゴリズムは最適化とサンプリングに2つの強力な近位フレームワークを用いる。
論文 参考訳(メタデータ) (2024-04-02T18:52:28Z) - Sample Complexity for Quadratic Bandits: Hessian Dependent Bounds and
Optimal Algorithms [64.10576998630981]
最適なヘッセン依存型サンプルの複雑さを, 初めて厳密に評価した。
ヘシアン非依存のアルゴリズムは、すべてのヘシアンインスタンスに対して最適なサンプル複雑さを普遍的に達成する。
本アルゴリズムにより得られたサンプルの最適複雑さは,重み付き雑音分布においても有効である。
論文 参考訳(メタデータ) (2023-06-21T17:03:22Z) - Learning Rate Free Sampling in Constrained Domains [21.853333421463603]
我々は、完全に学習率の低い制約付き領域をサンプリングするための新しい粒子ベースのアルゴリズム一式を導入する。
我々は,本アルゴリズムの性能を,単純度に基づくターゲットからのサンプリングを含む,様々な数値的な例で示す。
論文 参考訳(メタデータ) (2023-05-24T09:31:18Z) - A Proximal Algorithm for Sampling from Non-convex Potentials [14.909442791255042]
滑らかさに欠ける非滑らかなポテンシャルの問題を考察する。
滑らかではなく、ポテンシャルは半滑らかあるいは多重多重滑らか関数であると仮定される。
我々は、交互サンプリングフレームワークとして知られるGibbsサンプリングの特殊なケースを開発する。
論文 参考訳(メタデータ) (2022-05-20T13:58:46Z) - A Proximal Algorithm for Sampling from Non-smooth Potentials [10.980294435643398]
非滑らかなポテンシャルからのサンプリングのための新しいMCMCアルゴリズムを提案する。
本手法は, 近似バンドル法と交互サンプリングフレームワークに基づく。
この研究の重要な貢献は、任意の凸非滑らかポテンシャルに対して制限されたガウスオラクルを実現する高速アルゴリズムである。
論文 参考訳(メタデータ) (2021-10-09T15:26:07Z) - Towards Sample-Optimal Compressive Phase Retrieval with Sparse and
Generative Priors [59.33977545294148]
O(k log L)$サンプルは振幅に基づく経験損失関数を最小化する任意のベクトルに信号が近いことを保証するのに十分であることを示す。
この結果はスパース位相検索に適応し、基底信号が$s$-sparseおよび$n$-dimensionalである場合、$O(s log n)$サンプルは同様の保証に十分であることを示す。
論文 参考訳(メタデータ) (2021-06-29T12:49:54Z) - High Probability Complexity Bounds for Non-Smooth Stochastic Optimization with Heavy-Tailed Noise [51.31435087414348]
アルゴリズムが高い確率で小さな客観的残差を与えることを理論的に保証することが不可欠である。
非滑らか凸最適化の既存の方法は、信頼度に依存した複雑性境界を持つ。
そこで我々は,勾配クリッピングを伴う2つの手法に対して,新たなステップサイズルールを提案する。
論文 参考訳(メタデータ) (2021-06-10T17:54:21Z) - Randomized Stochastic Variance-Reduced Methods for Stochastic Bilevel
Optimization [62.87181271021217]
機械学習に多くの応用がある非SBO問題を考察する。
本稿では,非SBO問題に対する高速ランダム化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-05T18:28:42Z) - Adaptive Sampling for Best Policy Identification in Markov Decision
Processes [79.4957965474334]
本稿では,学習者が生成モデルにアクセスできる場合の,割引マルコフ決定(MDP)における最良の政治的識別の問題について検討する。
最先端アルゴリズムの利点を論じ、解説する。
論文 参考訳(メタデータ) (2020-09-28T15:22:24Z) - Active Model Estimation in Markov Decision Processes [108.46146218973189]
マルコフ決定過程(MDP)をモデル化した環境の正確なモデル学習のための効率的な探索の課題について検討する。
マルコフに基づくアルゴリズムは,本アルゴリズムと極大エントロピーアルゴリズムの両方を小サンプル方式で上回っていることを示す。
論文 参考訳(メタデータ) (2020-03-06T16:17:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。