On Testability of the Front-Door Model via Verma Constraints
- URL: http://arxiv.org/abs/2203.00161v1
- Date: Tue, 1 Mar 2022 00:38:29 GMT
- Title: On Testability of the Front-Door Model via Verma Constraints
- Authors: Rohit Bhattacharya, Razieh Nabi
- Abstract summary: Front-door criterion can be used to identify and compute causal effects despite unmeasured confounders.
Key assumptions -- the existence of a variable that fully mediates the effect of the treatment on the outcome, and which simultaneously does not suffer from similar issues of confounding -- are often deemed implausible.
We show that under mild conditions involving an auxiliary variable, the assumptions encoded in the front-door model may be tested via generalized equality constraints.
- Score: 7.52579126252489
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The front-door criterion can be used to identify and compute causal effects
despite the existence of unmeasured confounders between a treatment and
outcome. However, the key assumptions -- (i) the existence of a variable (or
set of variables) that fully mediates the effect of the treatment on the
outcome, and (ii) which simultaneously does not suffer from similar issues of
confounding as the treatment-outcome pair -- are often deemed implausible. This
paper explores the testability of these assumptions. We show that under mild
conditions involving an auxiliary variable, the assumptions encoded in the
front-door model (and simple extensions of it) may be tested via generalized
equality constraints a.k.a Verma constraints. We propose two goodness-of-fit
tests based on this observation, and evaluate the efficacy of our proposal on
real and synthetic data. We also provide theoretical and empirical comparisons
to instrumental variable approaches to handling unmeasured confounding.
Related papers
- Model-Agnostic Covariate-Assisted Inference on Partially Identified
Causal Effects [2.1638817206926855]
Many causal estimands are only partially identifiable since they depend on the unobservable joint distribution between potential outcomes.
We propose a unified and model-agnostic inferential approach for a wide class of partially identified estimands.
arXiv Detail & Related papers (2023-10-12T08:17:30Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Simultaneous inference for generalized linear models with unmeasured confounders [0.0]
We propose a unified statistical estimation and inference framework that harnesses structures and integrates linear projections into three key stages.
We show effective Type-I error control of $z$-tests as sample and response sizes approach infinity.
arXiv Detail & Related papers (2023-09-13T18:53:11Z) - A Double Machine Learning Approach to Combining Experimental and Observational Data [59.29868677652324]
We propose a double machine learning approach to combine experimental and observational studies.
Our framework tests for violations of external validity and ignorability under milder assumptions.
arXiv Detail & Related papers (2023-07-04T02:53:11Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Causal Discovery via Conditional Independence Testing with Proxy Variables [35.3493980628004]
The presence of unobserved variables, such as the latent confounder, can introduce bias in conditional independence testing.
We propose a novel hypothesis-testing procedure that can effectively examine the existence of the causal relationship over continuous variables.
arXiv Detail & Related papers (2023-05-09T09:08:39Z) - Neighborhood Adaptive Estimators for Causal Inference under Network
Interference [152.4519491244279]
We consider the violation of the classical no-interference assumption, meaning that the treatment of one individuals might affect the outcomes of another.
To make interference tractable, we consider a known network that describes how interference may travel.
We study estimators for the average direct treatment effect on the treated in such a setting.
arXiv Detail & Related papers (2022-12-07T14:53:47Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - Combining Experimental and Observational Data for Identification of
Long-Term Causal Effects [13.32091725929965]
We consider the task of estimating the causal effect of a treatment variable on a long-term outcome variable using data from an observational domain and an experimental domain.
The observational data is assumed to be confounded and hence without further assumptions, this dataset alone cannot be used for causal inference either.
arXiv Detail & Related papers (2022-01-26T04:21:14Z) - Deconfounding Scores: Feature Representations for Causal Effect
Estimation with Weak Overlap [140.98628848491146]
We introduce deconfounding scores, which induce better overlap without biasing the target of estimation.
We show that deconfounding scores satisfy a zero-covariance condition that is identifiable in observed data.
In particular, we show that this technique could be an attractive alternative to standard regularizations.
arXiv Detail & Related papers (2021-04-12T18:50:11Z) - Achieving Equalized Odds by Resampling Sensitive Attributes [13.114114427206678]
We present a flexible framework for learning predictive models that approximately satisfy the equalized odds notion of fairness.
This differentiable functional is used as a penalty driving the model parameters towards equalized odds.
We develop a formal hypothesis test to detect whether a prediction rule violates this property, the first such test in the literature.
arXiv Detail & Related papers (2020-06-08T00:18:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.