Short-term passenger flow prediction for multi-traffic modes: A residual
network and Transformer based multi-task learning method
- URL: http://arxiv.org/abs/2203.00422v1
- Date: Sun, 27 Feb 2022 01:09:19 GMT
- Title: Short-term passenger flow prediction for multi-traffic modes: A residual
network and Transformer based multi-task learning method
- Authors: Yongjie Yang, Jinlei Zhang, Lixing Yang, Ziyou Gao
- Abstract summary: Res-Transformer is a learning model for short-term passenger flow prediction of multi-traffic modes.
Model is evaluated on two large-scale real-world datasets from Beijing, China.
This paper can give critical insights into the short-tern passenger flow prediction for multi-traffic modes.
- Score: 21.13073816634534
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: With the prevailing of mobility as a service (MaaS), it becomes increasingly
important to manage multi-traffic modes simultaneously and cooperatively. As an
important component of MaaS, short-term passenger flow prediction for
multi-traffic modes has thus been brought into focus. It is a challenging
problem because the spatiotemporal features of multi-traffic modes are
critically complex. To solve the problem, this paper proposes a multi-task
learning-based model, called Res-Transformer, for short-term passenger flow
prediction of multi-traffic modes (subway, taxi, and bus). Each traffic mode is
treated as a single task in the model. The Res-Transformer consists of three
parts: (1) several modified transformer layers comprising 2D convolutional
neural networks (CNN) and multi-head attention mechanism, which helps to
extract the spatial and temporal features of multi-traffic modes, (2) a
residual network architecture used to extract the inner pattern of different
traffic modes and enhance the passenger flow features of multi-traffic modes.
The Res-Transformer model is evaluated on two large-scale real-world datasets
from Beijing, China. One is the region of a traffic hub and the other is the
region of a residential area. Experiments are conducted to compare the
performance of the proposed model with several state-of-the-art models to prove
the effectiveness and robustness of the proposed method. This paper can give
critical insights into the short-tern passenger flow prediction for
multi-traffic modes.
Related papers
- Think Twice Before Recognizing: Large Multimodal Models for General Fine-grained Traffic Sign Recognition [49.20086587208214]
We propose a new strategy called think twice before recognizing to improve fine-grained traffic sign recognition (TSR)
Our strategy achieves effective fine-grained TSR by stimulating the multiple-thinking capability of large multimodal models (LMM)
arXiv Detail & Related papers (2024-09-03T02:08:47Z) - A Multi-Graph Convolutional Neural Network Model for Short-Term Prediction of Turning Movements at Signalized Intersections [0.6215404942415159]
This study introduces a novel deep learning architecture, referred to as the multigraph convolution neural network (MGCNN) for turning movement prediction at intersections.
The proposed architecture combines a multigraph structure, built to model temporal variations in traffic data, with a spectral convolution operation to support modeling the spatial variations in traffic data over the graphs.
The model's ability to perform short-term predictions over 1, 2, 3, 4, and 5 minutes into the future was evaluated against four baseline state-of-the-art models.
arXiv Detail & Related papers (2024-06-02T05:41:25Z) - MTDT: A Multi-Task Deep Learning Digital Twin [8.600701437207725]
We introduce the Multi-Task Deep Learning Digital Twin (MTDT) as a solution for multifaceted and precise intersection traffic flow simulation.
MTDT enables accurate, fine-grained estimation of loop detector waveform time series for each lane of movement.
By consolidating the learning process across multiple tasks, MTDT demonstrates reduced overfitting, increased efficiency, and enhanced effectiveness.
arXiv Detail & Related papers (2024-05-02T00:34:10Z) - Deep Multi-View Channel-Wise Spatio-Temporal Network for Traffic Flow Prediction [18.008631008649658]
underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemporal underlineNetwork (MVC-STNet)
We study the novel problem of multi-channel traffic flow prediction, and propose a deep underlineMulti-underlineView underlineChannel-wise underlineSpatio-underlineTemp
arXiv Detail & Related papers (2024-04-23T13:39:04Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
spatial-temporal Graph Neural Network (GNN) models have emerged as one of the most promising methods to solve this problem.
We propose a novel propagation delay-aware dynamic long-range transFormer, namely PDFormer, for accurate traffic flow prediction.
Our method can not only achieve state-of-the-art performance but also exhibit competitive computational efficiency.
arXiv Detail & Related papers (2023-01-19T08:42:40Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - Multi-View TRGRU: Transformer based Spatiotemporal Model for Short-Term
Metro Origin-Destination Matrix Prediction [12.626657411944949]
We propose a hy-brid framework Multi-view TRGRU to address OD metro matrix prediction.
In particular, it uses three modules to model three flow change patterns: recent trend, daily trend, weekly trend.
In each module, a multi-view representation based on embedding for each station is constructed and fed into a transformer based re- gated current structure.
arXiv Detail & Related papers (2021-08-09T09:32:42Z) - Optimal transport in multilayer networks [68.8204255655161]
We propose a model where optimal flows on different layers contribute differently to the total cost to be minimized.
As an application, we consider transportation networks, where each layer is associated to a different transportation system.
We show an example of this result on the real 2-layer network of the city of Bordeaux with bus and tram, where in certain regimes the presence of the tram network significantly unburdens the traffic on the road network.
arXiv Detail & Related papers (2021-06-14T07:33:09Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
This paper proposes a novel model, Traffic Transformer, for spatial-temporal graph modeling and long-term traffic forecasting.
Transformer is the most popular framework in Natural Language Processing (NLP)
analyzing the attention weight matrixes can find the influential part of road networks, allowing us to learn the traffic networks better.
arXiv Detail & Related papers (2021-04-12T02:29:58Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - SMART: Simultaneous Multi-Agent Recurrent Trajectory Prediction [72.37440317774556]
We propose advances that address two key challenges in future trajectory prediction.
multimodality in both training data and predictions and constant time inference regardless of number of agents.
arXiv Detail & Related papers (2020-07-26T08:17:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.