論文の概要: Parameter-free Mirror Descent
- arxiv url: http://arxiv.org/abs/2203.00444v4
- Date: Thu, 8 Feb 2024 21:36:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-12 21:30:54.942120
- Title: Parameter-free Mirror Descent
- Title(参考訳): パラメータフリーミラーダイス
- Authors: Andrew Jacobsen, Ashok Cutkosky
- Abstract要約: 非有界領域における適応型およびパラメータフリーなアルゴリズムを構築するのに適した、修正されたオンラインミラー降下フレームワークを開発する。
我々はこの手法を利用して、最適な動的後悔境界を達成するために、制約のないオンライン線形最適化アルゴリズムを開発した。
また、新しいパラメータフリーな暗黙的な更新を構築するために、ミラー降下フレームワークを適用します。
- 参考スコア(独自算出の注目度): 45.076529281406614
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a modified online mirror descent framework that is suitable for
building adaptive and parameter-free algorithms in unbounded domains. We
leverage this technique to develop the first unconstrained online linear
optimization algorithm achieving an optimal dynamic regret bound, and we
further demonstrate that natural strategies based on
Follow-the-Regularized-Leader are unable to achieve similar results. We also
apply our mirror descent framework to build new parameter-free implicit
updates, as well as a simplified and improved unconstrained scale-free
algorithm.
- Abstract(参考訳): 非有界領域における適応およびパラメータフリーなアルゴリズム構築に適した修正オンラインミラー降下フレームワークを開発した。
この手法を応用して, 最適動的後悔境界を達成する最初のオンライン線形最適化アルゴリズムを開発し, さらに, フォロー・ザ・レギュラライズド・リーダーによる自然戦略では同様の結果が得られないことを実証する。
また,パラメータフリーな新たな暗黙的な更新や,シンプルで改良されたスケールフリーなアルゴリズムの構築にも,ミラー降下フレームワークを適用しました。
関連論文リスト
- Gradient-Variation Online Learning under Generalized Smoothness [56.38427425920781]
勾配変分オンライン学習は、オンライン関数の勾配の変化とともにスケールする後悔の保証を達成することを目的としている。
ニューラルネットワーク最適化における最近の取り組みは、一般化された滑らかさ条件を示唆し、滑らかさは勾配ノルムと相関する。
ゲームにおける高速収束と拡張逆最適化への応用について述べる。
論文 参考訳(メタデータ) (2024-08-17T02:22:08Z) - Learning to optimize with convergence guarantees using nonlinear system theory [0.4143603294943439]
本研究では,スムーズな目的関数に対するアルゴリズムの非制約パラメトリゼーションを提案する。
特に、私たちのフレームワークは自動微分ツールと直接互換性があります。
論文 参考訳(メタデータ) (2024-03-14T13:40:26Z) - Faster Margin Maximization Rates for Generic and Adversarially Robust Optimization Methods [20.118513136686452]
一階最適化法は、未決定の訓練目標を最小化する際に、本質的に他よりも特定の解を優先する傾向がある。
本稿では,ミラー降下法と最急降下法について,最先端の暗黙バイアス率を示す。
私たちの加速速度は、このゲームフレームワークにおけるオンライン学習アルゴリズムの残念な部分を活用することによって導き出されます。
論文 参考訳(メタデータ) (2023-05-27T18:16:56Z) - Introduction to Online Nonstochastic Control [34.77535508151501]
オンラインの非確率制御では、コスト関数と仮定された力学モデルからの摂動の両方が敵によって選択される。
目標は、ベンチマーククラスの政策から見て、最高の政策に対して低い後悔を得ることだ。
論文 参考訳(メタデータ) (2022-11-17T16:12:45Z) - Distributed Online Non-convex Optimization with Composite Regret [31.53784277195043]
本稿では,分散オンライン一般損失に対する新たなネットワーク後悔を伴う,新たな複合後悔を提案する。
我々の知る限り、オンラインの非線形学習における最初の後悔である。
論文 参考訳(メタデータ) (2022-09-21T04:16:33Z) - Optimal Parameter-free Online Learning with Switching Cost [47.415099037249085]
オンライン学習における自由とは、後ろ向きの最適決定に対するアルゴリズムの適応性を指す。
本稿では,パラメータフリーで要求される楽観的な更新を,スイッチングコストを前提として,そのようなアルゴリズムを設計する。
本稿では,オンライン線形最適化 (OLO) のための簡易かつ強力なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-05-13T18:44:27Z) - Implicit Parameter-free Online Learning with Truncated Linear Models [51.71216912089413]
パラメータフリーアルゴリズムは、設定された学習率を必要としないオンライン学習アルゴリズムである。
そこで我々は,「単純」なフレーバーを持つ新しい更新によって,切り離された線形モデルを活用できる新しいパラメータフリーアルゴリズムを提案する。
後悔の新たな分解に基づいて、新しい更新は効率的で、各ステップで1つの勾配しか必要とせず、切り捨てられたモデルの最小値をオーバーシュートすることはない。
論文 参考訳(メタデータ) (2022-03-19T13:39:49Z) - On Constraints in First-Order Optimization: A View from Non-Smooth
Dynamical Systems [99.59934203759754]
本稿では,スムーズな制約付き最適化のための一階法について紹介する。
提案手法の2つの特徴は、実現可能な集合全体の投影や最適化が避けられることである。
結果として得られるアルゴリズムの手順は、制約が非線形であっても簡単に実装できる。
論文 参考訳(メタデータ) (2021-07-17T11:45:13Z) - Minimizing Dynamic Regret and Adaptive Regret Simultaneously [60.17824125301273]
動的後悔と適応的後悔を同時に最小化できる新しいオンラインアルゴリズムを提案する。
我々の理論的保証は、あるアルゴリズムが任意の間隔で動的後悔を最小化できるという意味でさらに強い。
論文 参考訳(メタデータ) (2020-02-06T03:32:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。