論文の概要: Path sampling of recurrent neural networks by incorporating known
physics
- arxiv url: http://arxiv.org/abs/2203.00597v1
- Date: Tue, 1 Mar 2022 16:35:50 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-02 16:12:54.130194
- Title: Path sampling of recurrent neural networks by incorporating known
physics
- Title(参考訳): 既知の物理を組み込んだリカレントニューラルネットワークの経路サンプリング
- Authors: Sun-Ting Tsai, Eric Fields, Pratyush Tiwary
- Abstract要約: 我々は、再帰的なニューラルネットワークに一般的な熱力学または運動論的制約を組み込むことができる経路サンプリング手法を示す。
本稿では,長期記憶ネットワークとして広く利用されているリカレントニューラルネットワークについて述べる。
我々の手法は、他の生成人工知能モデルや、物理・社会科学の様々な分野における一般的な時系列に容易に一般化できる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recurrent neural networks have seen widespread use in modeling dynamical
systems in varied domains such as weather prediction, text prediction and
several others. Often one wishes to supplement the experimentally observed
dynamics with prior knowledge or intuition about the system. While the
recurrent nature of these networks allows them to model arbitrarily long
memories in the time series used in training, it makes it harder to impose
prior knowledge or intuition through generic constraints. In this work, we
present a path sampling approach based on principle of Maximum Caliber that
allows us to include generic thermodynamic or kinetic constraints into
recurrent neural networks. We show the method here for a widely used type of
recurrent neural network known as long short-term memory network in the context
of supplementing time series collecting from all-atom molecular dynamics. We
demonstrate the power of the formalism for different applications. Our method
can be easily generalized to other generative artificial intelligence models
and to generic time series in different areas of physical and social sciences,
where one wishes to supplement limited data with intuition or theory based
corrections.
- Abstract(参考訳): リカレントニューラルネットワークは、天気予報やテキスト予測など、さまざまな領域における動的システムのモデリングに広く利用されている。
しばしば、実験的に観察された力学を事前の知識や直観で補おうとする。
これらのネットワークの繰り返しの性質により、トレーニングで使用される時系列の任意の長さの記憶をモデル化することができるが、一般的な制約によって事前の知識や直感を課すことは困難である。
本研究では,最大校正器の原理に基づく経路サンプリング手法を提案する。これにより,再帰的なニューラルネットワークに一般的な熱力学あるいは運動論的制約を組み込むことができる。
本稿では,全原子分子動力学から収集した時系列を補うという文脈で,長期短期記憶ネットワークとして広く使用されるリカレントニューラルネットワークについて述べる。
異なるアプリケーションに対する形式主義のパワーを実証する。
本手法は、他の生成人工知能モデルや、直観や理論に基づく補正によって限られたデータを補うことを望む物理・社会科学の様々な分野における一般的な時系列に容易に一般化することができる。
関連論文リスト
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Introduction to dynamical mean-field theory of generic random neural
networks [2.0711789781518752]
初心者がこのツールの本質や基礎となる物理学にアクセスするのは容易ではない。
本稿では,この手法を汎用的ランダムニューラルネットワークの具体例に紹介する。
積分微分平均場方程式を解く数値的実装についても詳述する。
論文 参考訳(メタデータ) (2023-05-15T09:01:40Z) - Stretched and measured neural predictions of complex network dynamics [2.1024950052120417]
微分方程式のデータ駆動近似は、力学系のモデルを明らかにする従来の方法に代わる有望な方法である。
最近、ダイナミックスを研究する機械学習ツールとしてニューラルネットワークが採用されている。これは、データ駆動型ソリューションの検出や微分方程式の発見に使用できる。
従来の統計学習理論の限界を超えてモデルの一般化可能性を拡張することは可能であることを示す。
論文 参考訳(メタデータ) (2023-01-12T09:44:59Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Gaussian Process Surrogate Models for Neural Networks [6.8304779077042515]
科学と工学において、モデリング(英: modeling)とは、内部プロセスが不透明な複雑なシステムを理解するために用いられる方法論である。
本稿では,ガウス過程を用いたニューラルネットワークの代理モデルのクラスを構築する。
提案手法は,ニューラルネットワークのスペクトルバイアスに関連する既存の現象を捕捉し,サロゲートモデルを用いて現実的な問題を解決することを実証する。
論文 参考訳(メタデータ) (2022-08-11T20:17:02Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z) - Understanding and mitigating gradient pathologies in physics-informed
neural networks [2.1485350418225244]
この研究は、物理システムの結果を予測し、ノイズの多いデータから隠れた物理を発見するための物理情報ニューラルネットワークの有効性に焦点を当てる。
本稿では,モデル学習中の勾配統計を利用して,複合損失関数の異なる項間の相互作用のバランスをとる学習速度アニーリングアルゴリズムを提案する。
また、そのような勾配に耐性のある新しいニューラルネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-01-13T21:23:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。