Towards Efficient and Stable K-Asynchronous Federated Learning with
Unbounded Stale Gradients on Non-IID Data
- URL: http://arxiv.org/abs/2203.01214v1
- Date: Wed, 2 Mar 2022 16:17:23 GMT
- Title: Towards Efficient and Stable K-Asynchronous Federated Learning with
Unbounded Stale Gradients on Non-IID Data
- Authors: Zihao Zhou, Yanan Li, Xuebin Ren, Shusen Yang
- Abstract summary: Federated learning (FL) is an emerging privacy-preserving paradigm that enables multiple participants to train a global model without uploading raw data.
This paper proposes a two-stage weighted $K$ asynchronous FL with adaptive learning rate (WKAFL)
Experiments implemented on both benchmark and synthetic FL datasets show that WKAFL has better overall performance compared to existing algorithms.
- Score: 10.299577499118548
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging privacy-preserving paradigm that
enables multiple participants collaboratively to train a global model without
uploading raw data. Considering heterogeneous computing and communication
capabilities of different participants, asynchronous FL can avoid the
stragglers effect in synchronous FL and adapts to scenarios with vast
participants. Both staleness and non-IID data in asynchronous FL would reduce
the model utility. However, there exists an inherent contradiction between the
solutions to the two problems. That is, mitigating the staleness requires to
select less but consistent gradients while coping with non-IID data demands
more comprehensive gradients. To address the dilemma, this paper proposes a
two-stage weighted $K$ asynchronous FL with adaptive learning rate (WKAFL). By
selecting consistent gradients and adjusting learning rate adaptively, WKAFL
utilizes stale gradients and mitigates the impact of non-IID data, which can
achieve multifaceted enhancement in training speed, prediction accuracy and
training stability. We also present the convergence analysis for WKAFL under
the assumption of unbounded staleness to understand the impact of staleness and
non-IID data. Experiments implemented on both benchmark and synthetic FL
datasets show that WKAFL has better overall performance compared to existing
algorithms.
Related papers
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Take History as a Mirror in Heterogeneous Federated Learning [9.187993085263209]
Federated Learning (FL) allows several clients to cooperatively train machine learning models without disclosing the raw data.
In this work, we propose a novel asynchronous FL framework called Federated Historical Learning (FedHist)
FedHist effectively addresses the challenges posed by both Non-IID data and gradient staleness.
arXiv Detail & Related papers (2023-12-16T11:40:49Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - Feature Matching Data Synthesis for Non-IID Federated Learning [7.740333805796447]
Federated learning (FL) trains neural networks on edge devices without collecting data at a central server.
This paper proposes a hard feature matching data synthesis (HFMDS) method to share auxiliary data besides local models.
For better privacy preservation, we propose a hard feature augmentation method to transfer real features towards the decision boundary.
arXiv Detail & Related papers (2023-08-09T07:49:39Z) - Analysis and Optimization of Wireless Federated Learning with Data
Heterogeneity [72.85248553787538]
This paper focuses on performance analysis and optimization for wireless FL, considering data heterogeneity, combined with wireless resource allocation.
We formulate the loss function minimization problem, under constraints on long-term energy consumption and latency, and jointly optimize client scheduling, resource allocation, and the number of local training epochs (CRE)
Experiments on real-world datasets demonstrate that the proposed algorithm outperforms other benchmarks in terms of the learning accuracy and energy consumption.
arXiv Detail & Related papers (2023-08-04T04:18:01Z) - Depersonalized Federated Learning: Tackling Statistical Heterogeneity by
Alternating Stochastic Gradient Descent [6.394263208820851]
Federated learning (FL) enables devices to train a common machine learning (ML) model for intelligent inference without data sharing.
Raw data held by various cooperativelyicipators are always non-identically distributedly.
We propose a new FL that can significantly statistical optimize by the de-speed of this process.
arXiv Detail & Related papers (2022-10-07T10:30:39Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Towards Federated Learning on Time-Evolving Heterogeneous Data [13.080665001587281]
Federated Learning (FL) is an emerging learning paradigm that preserves privacy by ensuring client data locality on edge devices.
Despite recent research efforts on improving the optimization of heterogeneous data, the impact of time-evolving heterogeneous data in real-world scenarios has not been well studied.
We propose Continual Federated Learning (CFL), a flexible framework, to capture the time-evolving heterogeneity of FL.
arXiv Detail & Related papers (2021-12-25T14:58:52Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
Federated learning (FL) offers a solution to train a global machine learning model.
FL suffers performance degradation when client data distribution is non-IID.
We propose a new adaptive training algorithm $textttAdaFL$ to combat this degradation.
arXiv Detail & Related papers (2021-08-12T14:18:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.