論文の概要: A Predictive Model for Student Performance in Classrooms Using Student
Interactions With an eTextbook
- arxiv url: http://arxiv.org/abs/2203.03713v1
- Date: Wed, 16 Feb 2022 11:59:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-13 14:00:58.608407
- Title: A Predictive Model for Student Performance in Classrooms Using Student
Interactions With an eTextbook
- Title(参考訳): etextbookを用いた学生インタラクションを用いた教室における生徒パフォーマンス予測モデル
- Authors: Ahmed Abd Elrahman, Taysir Hassan A Soliman, Ahmed I. Taloba, and
Mohammed F. Farghally
- Abstract要約: 本稿では,学生がインタラクティブなオンラインeTextbookとどのように相互作用するかの分析に基づいて,学生のパフォーマンスを予測する新しいモデルを提案する。
提案モデルを構築するために,データ構造とアルゴリズムのコースから得られたデータに基づいて,最も一般的な分類アルゴリズムと回帰アルゴリズムを評価した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rise of online eTextbooks and Massive Open Online Courses (MOOCs), a
huge amount of data has been collected related to students' learning. With the
careful analysis of this data, educators can gain useful insights into the
performance of their students and their behavior in learning a particular
topic. This paper proposes a new model for predicting student performance based
on an analysis of how students interact with an interactive online eTextbook.
By being able to predict students' performance early in the course, educators
can easily identify students at risk and provide a suitable intervention. We
considered two main issues the prediction of good/bad performance and the
prediction of the final exam grade. To build the proposed model, we evaluated
the most popular classification and regression algorithms on data from a data
structures and algorithms course (CS2) offered in a large public research
university. Random Forest Regression and Multiple Linear Regression have been
applied in Regression. While Logistic Regression, decision tree, Random Forest
Classifier, K Nearest Neighbors, and Support Vector Machine have been applied
in classification.
- Abstract(参考訳): オンラインeテキストブックやmoocs(massive open online courses)の普及に伴い,学生の学習に関連する膨大なデータが収集されている。
このデータを慎重に分析することで、教育者は生徒のパフォーマンスと特定のトピックを学ぶ際の行動について有用な洞察を得ることができる。
本稿では,学生がインタラクティブなオンラインeTextbookとどのように相互作用するかの分析に基づいて,学生のパフォーマンスを予測する新しいモデルを提案する。
授業の早い段階で生徒の成績を予測することで、教育者は生徒のリスクを容易に識別し、適切な介入を行うことができる。
成績の良否の予測と最終試験成績の予測の2つの主課題を検討した。
提案モデルを構築するために,大規模公立大学において提供されるデータ構造とアルゴリズムコース(CS2)のデータに基づいて,最も一般的な分類と回帰アルゴリズムを評価した。
ランダムフォレスト回帰と多重線形回帰が回帰に適用されている。
ロジスティック回帰、決定木、ランダムフォレスト分類器、K近縁地区、サポートベクトルマシンが分類に応用されている。
関連論文リスト
- Detecting Unsuccessful Students in Cybersecurity Exercises in Two Different Learning Environments [0.37729165787434493]
本稿では,学生の難易度を予測するための自動ツールを開発する。
潜在的な応用として、このようなモデルは、苦労している生徒を検知し、目標とする支援を提供するインストラクターを助けることができる。
論文 参考訳(メタデータ) (2024-08-16T04:57:54Z) - Self-Training with Pseudo-Label Scorer for Aspect Sentiment Quad Prediction [54.23208041792073]
Aspect Sentiment Quad Prediction (ASQP) は、与えられたレビューに対して全てのクワッド(アスペクト項、アスペクトカテゴリー、意見項、感情極性)を予測することを目的としている。
ASQPタスクにおける重要な課題はラベル付きデータの不足であり、既存のメソッドのパフォーマンスを制限している。
そこで我々は,擬似ラベルスコアラーを用いた自己学習フレームワークを提案し,レビューと擬似ラベルの一致をスコアラーが評価する。
論文 参考訳(メタデータ) (2024-06-26T05:30:21Z) - ClickTree: A Tree-based Method for Predicting Math Students' Performance Based on Clickstream Data [0.0]
我々は,学生のクリックストリームデータに基づいて,数学的課題における生徒のパフォーマンスを予測するための木ベースの手法であるClickTreeを開発した。
この手法は2023年の教育データマイニングカップで0.78844のAUCを達成し、大会では2位となった。
エンド・ユニット・アサイン問題への回答が良好であった学生は、イン・ユニット・アサイン問題により関与し、より多くの問題に正しく答えた。
論文 参考訳(メタデータ) (2024-03-01T23:39:03Z) - Enhancing the Performance of Automated Grade Prediction in MOOC using
Graph Representation Learning [3.4882560718166626]
大規模オープンオンラインコース(MOOCs)は、オンライン学習において急速に成長する現象として大きな注目を集めている。
現在の自動評価アプローチでは、下流タスクに関わるさまざまなエンティティ間の構造的リンクを見落としている。
我々は、大規模なMOOCデータセットのためのユニークな知識グラフを構築し、研究コミュニティに公開します。
論文 参考訳(メタデータ) (2023-10-18T19:27:39Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Generalisable Methods for Early Prediction in Interactive Simulations
for Education [5.725477071353353]
シミュレーションにおける生徒のインタラクションデータを,期待性能に基づいて分類することは,適応的な指導を可能にする可能性がある。
まず,学生のタスク内動作を通して概念的理解を計測する。
そこで,我々は,クリックストリームデータから,シミュレーションの状態と学生の行動の両方をエンコードする,新しいタイプの特徴を提案する。
論文 参考訳(メタデータ) (2022-07-04T14:46:56Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Predicting Seriousness of Injury in a Traffic Accident: A New Imbalanced
Dataset and Benchmark [62.997667081978825]
本稿では,交通事故における傷害の重大性を予測するために,機械学習アルゴリズムの性能を評価する新しいデータセットを提案する。
データセットは、英国運輸省から公開されているデータセットを集約することで作成される。
論文 参考訳(メタデータ) (2022-05-20T21:15:26Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
グラフ表現と学習を伴う新しい学習パラダイムを提案する。
本フレームワークは,1) 下位モデルとしてのバックボーンネットワーク(フィードフォワードニューラルネットなど)が,予測ラベルの入力および出力として機能を取り,2) 上位モデルとしてのグラフニューラルネットワークが,観測データから構築された特徴データグラフをメッセージパッシングすることで,新機能の埋め込みを外挿することを学ぶ。
論文 参考訳(メタデータ) (2021-10-09T09:02:45Z) - A framework for predicting, interpreting, and improving Learning
Outcomes [0.0]
本研究では,学生の観察的,行動的,受験的特徴に基づいて,テストスコアを予測するEmbibe Score Quotient Model(ESQ)を開発した。
ESQは、学生の将来的な採点可能性の予測や、個別の学習ナッジの提供に使用することができる。
論文 参考訳(メタデータ) (2020-10-06T11:22:27Z) - Peer-inspired Student Performance Prediction in Interactive Online
Question Pools with Graph Neural Network [56.62345811216183]
本稿では,対話型オンライン質問プールにおいて,より優れた生徒のパフォーマンス予測を実現するために,グラフニューラルネットワーク(GNN)を用いた新しいアプローチを提案する。
具体的には,学生のインタラクションを用いた学生と質問の関係をモデル化し,学生のインタラクション・クエストネットワークを構築する。
1631の質問に対して4000人以上の学生の問題解決過程において生成した104,113個のマウス軌跡からなる実世界のデータセットに対するアプローチの有効性を評価した。
論文 参考訳(メタデータ) (2020-08-04T14:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。