論文の概要: Neural Face Identification in a 2D Wireframe Projection of a Manifold
Object
- arxiv url: http://arxiv.org/abs/2203.04229v1
- Date: Tue, 8 Mar 2022 17:47:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-09 16:04:38.381717
- Title: Neural Face Identification in a 2D Wireframe Projection of a Manifold
Object
- Title(参考訳): マニフォールド物体の2次元ワイヤフレーム投影におけるニューラルフェイス同定
- Authors: Kehan Wang and Jia Zheng and Zihan Zhou
- Abstract要約: コンピュータ支援デザイン(CAD)システムでは、一般的に3Dオブジェクトの設計を描写するために2D線描画が使用される。
本稿では,新しいデータ駆動型視点から顔識別の古典的問題にアプローチする。
我々は、同じ顔のエッジを自然な順序で予測するために、人気のあるTransformerモデルの変種を採用する。
- 参考スコア(独自算出の注目度): 8.697806983058035
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In computer-aided design (CAD) systems, 2D line drawings are commonly used to
illustrate 3D object designs. To reconstruct the 3D models depicted by a single
2D line drawing, an important key is finding the edge loops in the line drawing
which correspond to the actual faces of the 3D object. In this paper, we
approach the classical problem of face identification from a novel data-driven
point of view. We cast it as a sequence generation problem: starting from an
arbitrary edge, we adopt a variant of the popular Transformer model to predict
the edges associated with the same face in a natural order. This allows us to
avoid searching the space of all possible edge loops with various hand-crafted
rules and heuristics as most existing methods do, deal with challenging cases
such as curved surfaces and nested edge loops, and leverage additional cues
such as face types. We further discuss how possibly imperfect predictions can
be used for 3D object reconstruction.
- Abstract(参考訳): コンピュータ支援設計(cad)システムでは、2d線描画は3dオブジェクト設計の表現によく用いられる。
一つの2d線描画で表される3dモデルを再構築するには、3dオブジェクトの実際の顔に対応する線描画のエッジループを見つけることが重要な鍵となる。
本稿では,新しいデータ駆動視点から顔識別の古典的な問題にアプローチする。
任意のエッジから始めて、人気トランスフォーマーモデルの変種を採用して、同じ顔に関連するエッジを自然な順序で予測します。
これにより、様々な手作りのルールやヒューリスティックで可能なすべてのエッジループの空間を探索することを避け、曲面やネストしたエッジループのような困難なケースに対応し、フェイスタイプのような追加のヒントを活用できます。
さらに,不完全な予測が3次元オブジェクト再構成にどのように役立つかについても論じる。
関連論文リスト
- 3D Neural Edge Reconstruction [61.10201396044153]
本研究では,線と曲線に焦点をあてて3次元エッジ表現を学習する新しい手法であるEMAPを紹介する。
多視点エッジマップから無符号距離関数(UDF)の3次元エッジ距離と方向を暗黙的に符号化する。
この神経表現の上に、推定されたエッジ点とその方向から3次元エッジを頑健に抽象化するエッジ抽出アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-29T17:23:51Z) - Sculpt3D: Multi-View Consistent Text-to-3D Generation with Sparse 3D Prior [57.986512832738704]
本稿では,2次元拡散モデルを再学習することなく,抽出した参照オブジェクトから3次元先行を明示的に注入する,電流パイプラインを備えた新しいフレームワークSculpt3Dを提案する。
具体的には、スパース線サンプリングによるキーポイントの監督により、高品質で多様な3次元形状を保証できることを実証する。
これら2つの分離された設計は、参照オブジェクトからの3D情報を利用して、2D拡散モデルの生成品質を保ちながら、3Dオブジェクトを生成する。
論文 参考訳(メタデータ) (2024-03-14T07:39:59Z) - RAFaRe: Learning Robust and Accurate Non-parametric 3D Face
Reconstruction from Pseudo 2D&3D Pairs [13.11105614044699]
単視3次元顔再構成(SVFR)のための頑健で正確な非パラメトリック手法を提案する。
大規模な擬似2D&3Dデータセットは、まず詳細な3D顔をレンダリングし、野生の画像の顔と描画された顔とを交換することによって作成される。
本モデルは,FaceScape-wild/labおよびMICCベンチマークにおいて,従来の手法よりも優れていた。
論文 参考訳(メタデータ) (2023-02-10T19:40:26Z) - Pruning-based Topology Refinement of 3D Mesh using a 2D Alpha Mask [6.103988053817792]
本稿では,顔解析手法を用いて,任意の3次元メッシュのトポロジを洗練させる手法を提案する。
私たちのソリューションは、それぞれの顔を2次元のソフトマップとして描画する微分可能を利用しています。
我々のモジュールは3Dメッシュを生成するネットワークに非依存であるため、自己管理されたイメージベースの3D再構成パイプラインに簡単に接続することができる。
論文 参考訳(メタデータ) (2022-10-17T14:51:38Z) - Beyond 3DMM: Learning to Capture High-fidelity 3D Face Shape [77.95154911528365]
3Dモーフィブルモデル(3DMM)の適合性は、その強力な3D先行性のため、顔解析に広く有用である。
以前に再建された3次元顔は、微細な形状が失われるため、視差の低下に悩まされていた。
本論文は, パーソナライズされた形状が対応する人物と同一に見えるよう, パーソナライズされた形状を捉えるための完全な解を提案する。
論文 参考訳(メタデータ) (2022-04-09T03:46:18Z) - DensePose 3D: Lifting Canonical Surface Maps of Articulated Objects to
the Third Dimension [71.71234436165255]
DensePose 3Dは2次元画像アノテーションのみから弱い教師付きで再構築を学習できる手法である。
3Dスキャンを必要としないため、DensePose 3Dは異なる動物種などの幅広いカテゴリーの学習に利用できる。
我々は,人間と動物のカテゴリーの合成データと実データの両方をベースラインとして,最先端の非剛体構造と比較し,顕著な改善を示した。
論文 参考訳(メタデータ) (2021-08-31T18:33:55Z) - Canonical 3D Deformer Maps: Unifying parametric and non-parametric
methods for dense weakly-supervised category reconstruction [79.98689027127855]
独立オブジェクトの2次元画像の集合から学習できる共通オブジェクトカテゴリの3次元形状の表現を提案する。
提案手法は, パラメトリック変形モデル, 非パラメトリック3次元再構成, 標準埋め込みの概念に基づく新しい手法で構築する。
顔、車、鳥の野生のデータセットを3Dで再現することで、最先端の成果が得られます。
論文 参考訳(メタデータ) (2020-08-28T15:44:05Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - Landmark Detection and 3D Face Reconstruction for Caricature using a
Nonlinear Parametric Model [27.553158595012974]
画像の自動ランドマーク検出と3次元顔再構成のための最初の自動手法を提案する。
構築されたデータセットと非線形パラメトリックモデルに基づいて,入力された2次元似顔画像から3次元顔形状と向きを回帰するニューラルネットワークに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-04-20T10:34:52Z) - 3D Shape Segmentation with Geometric Deep Learning [2.512827436728378]
本稿では,部分分割問題としてセグメント化全体を解くために,3次元形状の3次元拡張ビューを生成するニューラルネットワークベースのアプローチを提案する。
提案手法は,公開データセットの3次元形状と,フォトグラム法を用いて再構成した実物体を用いて検証する。
論文 参考訳(メタデータ) (2020-02-02T14:11:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。