論文の概要: Representation, learning, and planning algorithms for geometric task and
motion planning
- arxiv url: http://arxiv.org/abs/2203.04605v1
- Date: Wed, 9 Mar 2022 09:47:01 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 14:49:47.204995
- Title: Representation, learning, and planning algorithms for geometric task and
motion planning
- Title(参考訳): 幾何学的タスクと動作計画のための表現・学習・計画アルゴリズム
- Authors: Beomjoon Kim, Luke Shimanuki, Leslie Pack Kaelbling, Tom\'as
Lozano-P\'erez
- Abstract要約: 幾何学的課題と運動計画(GTAMP)を導くための学習フレームワークを提案する。
GTAMPはタスクと動作計画のサブクラスであり、複数の物体を可動障害物内の対象領域に移動させることが目的である。
GTAMP問題には、ハイブリッド検索空間と高価なアクション実現可能性チェックが含まれるため、標準グラフ探索アルゴリズムは直接適用されない。
- 参考スコア(独自算出の注目度): 24.862289058632186
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a framework for learning to guide geometric task and motion
planning (GTAMP). GTAMP is a subclass of task and motion planning in which the
goal is to move multiple objects to target regions among movable obstacles. A
standard graph search algorithm is not directly applicable, because GTAMP
problems involve hybrid search spaces and expensive action feasibility checks.
To handle this, we introduce a novel planner that extends basic heuristic
search with random sampling and a heuristic function that prioritizes
feasibility checking on promising state action pairs. The main drawback of such
pure planners is that they lack the ability to learn from planning experience
to improve their efficiency. We propose two learning algorithms to address
this. The first is an algorithm for learning a rank function that guides the
discrete task level search, and the second is an algorithm for learning a
sampler that guides the continuous motionlevel search. We propose design
principles for designing data efficient algorithms for learning from planning
experience and representations for effective generalization. We evaluate our
framework in challenging GTAMP problems, and show that we can improve both
planning and data efficiency
- Abstract(参考訳): 本稿では,幾何学的タスクと運動計画(GTAMP)を学習するためのフレームワークを提案する。
GTAMPはタスクと動作計画のサブクラスであり、複数の物体を可動障害物内の対象領域に移動させることが目的である。
GTAMP問題には、ハイブリッド検索空間と高価なアクション実現可能性チェックが含まれるため、標準グラフ探索アルゴリズムは直接適用されない。
これに対処するために,ランダムサンプリングによる基本ヒューリスティック探索と,有望な状態動作ペアに対して実現可能性チェックを優先するヒューリスティック関数を拡張する新しいプランナーを提案する。
このような純粋なプランナーの主な欠点は、効率を改善するために計画経験から学ぶ能力がないことです。
これに対処するための学習アルゴリズムを2つ提案する。
第1のアルゴリズムは離散タスクレベル探索を導くランク関数を学習するアルゴリズムであり,第2のアルゴリズムは連続モーションレベル探索を誘導するサンプルラーを学習するアルゴリズムである。
本稿では,計画経験から学習するためのデータ効率的なアルゴリズムを設計するための設計原則と,効率的な一般化のための表現を提案する。
我々はgtamp問題に取り組むためのフレームワークを評価し、計画とデータ効率の両方を改善することができることを示す。
関連論文リスト
- Reinforcement Learning with Success Induced Task Prioritization [68.8204255655161]
本稿では,自動カリキュラム学習のためのフレームワークであるSuccess induced Task Prioritization (SITP)を紹介する。
アルゴリズムはエージェントに最速の学習を提供するタスクの順序を選択する。
我々は,SITPが他のカリキュラム設計手法と一致するか,あるいは上回っていることを実証する。
論文 参考訳(メタデータ) (2022-12-30T12:32:43Z) - PALMER: Perception-Action Loop with Memory for Long-Horizon Planning [1.5469452301122177]
PALMERと呼ばれる汎用計画アルゴリズムを導入する。
Palmerは古典的なサンプリングベースの計画アルゴリズムと学習に基づく知覚表現を組み合わせる。
これにより、表現学習、記憶、強化学習、サンプリングベースの計画の間に、緊密なフィードバックループが生成される。
論文 参考訳(メタデータ) (2022-12-08T22:11:49Z) - Sequence-Based Plan Feasibility Prediction for Efficient Task and Motion
Planning [36.300564378022315]
本稿では,移動環境における移動操作問題を解決するための学習可能なタスク・アンド・モーション・プランニング(TAMP)アルゴリズムを提案する。
本アルゴリズムのコアは,タスク計画,目標,初期状態を考慮したトランスフォーマーに基づく新しい学習手法であるPIGINetであり,タスク計画に関連する運動軌跡の発見確率を予測する。
論文 参考訳(メタデータ) (2022-11-03T04:12:04Z) - Systematic Comparison of Path Planning Algorithms using PathBench [55.335463666037086]
パスプランニングはモバイルロボティクスの重要な構成要素である。
学習に基づく経路計画アルゴリズムの開発は、急速な成長を遂げている。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2022-03-07T01:52:57Z) - C-Planning: An Automatic Curriculum for Learning Goal-Reaching Tasks [133.40619754674066]
ゴール条件強化学習は、ナビゲーションや操作を含む幅広い領域のタスクを解決できる。
本研究では,学習時間における探索を用いて,中間状態を自動生成する遠隔目標獲得タスクを提案する。
E-stepはグラフ検索を用いて最適な経路点列を計画することに対応し、M-stepはそれらの経路点に到達するための目標条件付きポリシーを学習することを目的としている。
論文 参考訳(メタデータ) (2021-10-22T22:05:31Z) - PathBench: A Benchmarking Platform for Classical and Learned Path
Planning Algorithms [59.3879573040863]
パスプランニングは、モバイルロボティクスの重要なコンポーネントです。
アルゴリズムを全体的あるいは統一的にベンチマークする試みはほとんど行われていない。
本稿では,パスプランニングアルゴリズムの開発,視覚化,トレーニング,テスト,ベンチマークを行うプラットフォームであるPathBenchについて述べる。
論文 参考訳(メタデータ) (2021-05-04T21:48:18Z) - Waypoint Planning Networks [66.72790309889432]
本稿では,ローカルカーネル(A*のような古典的アルゴリズム)と学習アルゴリズムを用いたグローバルカーネルを用いたLSTMに基づくハイブリッドアルゴリズムを提案する。
我々は、WPNとA*を比較し、動き計画ネットワーク(MPNet)やバリューネットワーク(VIN)を含む関連する作業と比較する。
WPN の探索空間は A* よりもかなり小さいが、ほぼ最適な結果が得られることが示されている。
論文 参考訳(メタデータ) (2021-05-01T18:02:01Z) - Learning Symbolic Operators for Task and Motion Planning [29.639902380586253]
統合されたタスクとモーションプランナー(TAMP)は、モーションレベルの決定とタスクレベルの計画実現性の複雑な相互作用を処理します。
TAMPアプローチは、タスクレベルの検索を導くためにドメイン固有のシンボリック演算子に依存し、計画を効率的にします。
演算子学習のためのボトムアップリレーショナル学習法を提案し,TAMPシステムの計画に学習した演算子をどのように使用できるかを示す。
論文 参考訳(メタデータ) (2021-02-28T19:08:56Z) - Divide-and-Conquer Monte Carlo Tree Search For Goal-Directed Planning [78.65083326918351]
暗黙的な逐次計画の仮定に代わるものを検討する。
本稿では,最適計画の近似を行うため,Divide-and-Conquer Monte Carlo Tree Search (DC-MCTS)を提案する。
計画順序に対するこのアルゴリズム的柔軟性は,グリッドワールドにおけるナビゲーションタスクの改善に繋がることを示す。
論文 参考訳(メタデータ) (2020-04-23T18:08:58Z) - Flexible and Efficient Long-Range Planning Through Curious Exploration [13.260508939271764]
The Curious Sample Planner can realize temporallyextended plan for a wide range of really 3D task。
対照的に、標準的な計画と学習の方法は、多くの場合、これらのタスクを全く解決しなかったり、膨大な数のトレーニングサンプルでのみ実行できなかったりします。
論文 参考訳(メタデータ) (2020-04-22T21:47:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。