論文の概要: Regularized Deep Signed Distance Fields for Reactive Motion Generation
- arxiv url: http://arxiv.org/abs/2203.04739v1
- Date: Wed, 9 Mar 2022 14:21:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-10 17:02:18.414731
- Title: Regularized Deep Signed Distance Fields for Reactive Motion Generation
- Title(参考訳): 反応運動生成のための正則化深手距離場
- Authors: Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri, Jan Peters and
Georgia Chalvatzaki
- Abstract要約: 距離に基づく制約は、ロボットが自分の行動を計画し、安全に行動できるようにするための基本となる。
本研究では,任意のスケールでスムーズな距離場を計算できる単一暗黙関数ReDSDFを提案する。
共有作業空間における全身制御(WBC)と安全なヒューマンロボットインタラクション(HRI)のための代表的タスクにおけるアプローチの有効性を実証する。
- 参考スコア(独自算出の注目度): 30.792481441975585
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Autonomous robots should operate in real-world dynamic environments and
collaborate with humans in tight spaces. A key component for allowing robots to
leave structured lab and manufacturing settings is their ability to evaluate
online and real-time collisions with the world around them. Distance-based
constraints are fundamental for enabling robots to plan their actions and act
safely, protecting both humans and their hardware. However, different
applications require different distance resolutions, leading to various
heuristic approaches for measuring distance fields w.r.t. obstacles, which are
computationally expensive and hinder their application in dynamic obstacle
avoidance use-cases. We propose Regularized Deep Signed Distance Fields
(ReDSDF), a single neural implicit function that can compute smooth distance
fields at any scale, with fine-grained resolution over high-dimensional
manifolds and articulated bodies like humans, thanks to our effective data
generation and a simple inductive bias during training. We demonstrate the
effectiveness of our approach in representative simulated tasks for whole-body
control (WBC) and safe Human-Robot Interaction (HRI) in shared workspaces.
Finally, we provide proof of concept of a real-world application in a HRI
handover task with a mobile manipulator robot.
- Abstract(参考訳): 自律ロボットは現実世界の動的環境で動作し、狭い空間で人間と協調するべきである。
ロボットが構造されたラボや製造環境を離れることを可能にする重要な要素は、周囲の世界とのオンラインとリアルタイムの衝突を評価する能力だ。
距離に基づく制約は、ロボットがアクションを計画し、安全に行動し、人間とハードウェアの両方を保護するために基本となる。
しかし、異なるアプリケーションでは異なる距離分解能が必要となり、様々なヒューリスティックなアプローチによって距離場 w.r.t. 障害物の測定が行われ、計算コストが高く、動的障害物回避ユースケースでの使用を妨げている。
本研究では,高次元の多様体や人間のような調音体に対して微細な分解能を持たせながら,任意のスケールで滑らかな距離場を計算できる単一ニューラル暗黙関数ReDSDFを提案する。
共有作業空間における全身制御(WBC)と安全ロボットインタラクション(HRI)のための代表的タスクにおけるアプローチの有効性を示す。
最後に,移動マニピュレータロボットを用いたHRIハンドオーバタスクにおける実世界の応用概念の実証を行う。
関連論文リスト
- Robot Navigation with Entity-Based Collision Avoidance using Deep Reinforcement Learning [0.0]
本稿では,ロボットのさまざまなエージェントや障害物との相互作用を高める新しい手法を提案する。
このアプローチでは、エンティティタイプに関する情報を使用し、衝突回避を改善し、より安全なナビゲーションを保証する。
本研究では,大人,自転車乗り,子供,静的障害物など,さまざまな物体との衝突に対してロボットをペナルティ化する新たな報酬関数を提案する。
論文 参考訳(メタデータ) (2024-08-26T11:16:03Z) - RoboScript: Code Generation for Free-Form Manipulation Tasks across Real
and Simulation [77.41969287400977]
本稿では,コード生成を利用したデプロイ可能なロボット操作パイプラインのためのプラットフォームである textbfRobotScript を提案する。
自由形自然言語におけるロボット操作タスクのためのコード生成ベンチマークも提案する。
我々は,Franka と UR5 のロボットアームを含む,複数のロボットエボディメントにまたがるコード生成フレームワークの適応性を実証した。
論文 参考訳(メタデータ) (2024-02-22T15:12:00Z) - Improving safety in physical human-robot collaboration via deep metric
learning [36.28667896565093]
柔軟な生産シナリオでは、ロボットとの直接の物理的相互作用がますます重要になっている。
リスクポテンシャルを低く抑えるため、物理的な接触がある場合や安全距離に違反する場合など、比較的簡単な操作措置が定められている。
この研究はDeep Metric Learning(DML)アプローチを用いて、非接触ロボットの動き、物理的人間とロボットの相互作用を目的とした意図的な接触、衝突状況の区別を行う。
論文 参考訳(メタデータ) (2023-02-23T11:26:51Z) - Safe reinforcement learning of dynamic high-dimensional robotic tasks:
navigation, manipulation, interaction [31.553783147007177]
強化学習では、損傷を起こさない環境を探索する上で、安全はより基本的なものである。
本稿では,各種ロボット作業の強化学習のための安全探索の新たな定式化について紹介する。
我々のアプローチは、幅広い種類のロボットプラットフォームに適用され、データから学んだ複雑な衝突制約の下でも安全を強制する。
論文 参考訳(メタデータ) (2022-09-27T11:23:49Z) - Physical Interaction and Manipulation of the Environment using Aerial
Robots [1.370633147306388]
空飛ぶロボットと環境との物理的相互作用には、無数の潜在的な応用があり、多くのオープンな課題を抱える新興分野である。
これらの課題に対処するために、完全に作動したマルチローターが導入された。
位置と方向を完全に制御し、ロボットにマルチDoF操作アームを装着する必要がなくなる。
しかし、現実のアプリケーションで使われる前には、多くのオープンな問題がある。
論文 参考訳(メタデータ) (2022-07-06T13:15:10Z) - Model Predictive Control for Fluid Human-to-Robot Handovers [50.72520769938633]
人間の快適さを考慮に入れた計画運動は、人間ロボットのハンドオーバプロセスの一部ではない。
本稿では,効率的なモデル予測制御フレームワークを用いてスムーズな動きを生成することを提案する。
ユーザ数名の多様なオブジェクトに対して,人間とロボットのハンドオーバ実験を行う。
論文 参考訳(メタデータ) (2022-03-31T23:08:20Z) - SERA: Safe and Efficient Reactive Obstacle Avoidance for Collaborative
Robotic Planning in Unstructured Environments [1.5229257192293197]
本稿では,リアクティブな全身障害物回避手法を提案する。
ロボットアームは、直接接触することなく、任意の3次元形状の障害物を積極的に回避することができる。
本手法は,非定常環境における安全ロボット協調のための堅牢で効果的なソリューションを提供する。
論文 参考訳(メタデータ) (2022-03-24T21:11:43Z) - Nonprehensile Riemannian Motion Predictive Control [57.295751294224765]
本稿では,リアル・ツー・シムの報酬分析手法を導入し,リアルなロボット・プラットフォームに対する行動の可能性を確実に予測する。
連続的なアクション空間でオブジェクトを反応的にプッシュするクローズドループコントローラを作成します。
我々は,RMPCが乱雑な環境だけでなく,乱雑な環境においても頑健であり,ベースラインよりも優れていることを観察した。
論文 参考訳(メタデータ) (2021-11-15T18:50:04Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
我々は、データ駆動型アプローチを用いて、異種ロボットチームをグローバルな目標に向けてナビゲートする、エンドツーエンドのオンラインモーションプランニングフレームワークを提案する。
モデル予測制御(SMPC)を用いて,ロボット力学を満たす制御入力を計算し,障害物回避時の不確実性を考慮した。
リカレントニューラルネットワークは、SMPC有限時間地平線解における将来の状態の不確かさを素早く推定するために用いられる。
ディープQ学習エージェントがハイレベルパスプランナーとして機能し、SMPCにロボットを望ましいグローバルな目標に向けて移動させる目標位置を提供する。
論文 参考訳(メタデータ) (2021-08-03T02:56:21Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
本稿では,REMPを用いた短時間キャリブレーションにより,ロボットが到達できると考える非専門家と地道とのギャップを効果的に埋めることができることを示す。
この校正手順は,ユーザ認識の向上だけでなく,人間とロボットのコラボレーションの効率化にも寄与することを示す。
論文 参考訳(メタデータ) (2021-03-06T09:14:30Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
一般的なコンタクトリッチな操作問題は、ロボット工学における長年の課題である。
深層強化学習は、ロボット操作タスクの解決に大きな可能性を示している。
動的プロパティのコンテキスト埋め込みをオンラインにエンコードする深層RL法であるCOCOIを提案する。
論文 参考訳(メタデータ) (2020-11-23T08:20:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。