論文の概要: Quantum advantage for multi-option portfolio pricing and valuation
adjustments
- arxiv url: http://arxiv.org/abs/2203.04924v1
- Date: Wed, 9 Mar 2022 18:14:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 19:25:49.279274
- Title: Quantum advantage for multi-option portfolio pricing and valuation
adjustments
- Title(参考訳): マルチオプションポートフォリオ価格とバリュエーション調整における量子アドバンテージ
- Authors: Jeong Yu Han, Patrick Rebentrost
- Abstract要約: 本稿では,デリバティブポートフォリオの評価において重要な役割を担っているCVA(Credit Valuation Adjustments)の問題について検討する。
分散の異なる尺度でCVAを近似するために,統計的サンプリングプロセスを高速化する量子アルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A critical problem in the financial world deals with the management of risk,
from regulatory risk to portfolio risk. Many such problems involve the analysis
of securities modelled by complex dynamics that cannot be captured
analytically, and hence rely on numerical techniques that simulate the
stochastic nature of the underlying variables. These techniques may be
computationally difficult or demanding. Hence, improving these methods offers a
variety of opportunities for quantum algorithms. In this work, we study the
problem of Credit Valuation Adjustments (CVAs) which have significant
importance in the valuation of derivative portfolios. We propose quantum
algorithms that accelerate statistical sampling processes to approximate the
CVA under different measures of dispersion, using known techniques in Quantum
Monte Carlo (QMC) and analyse the conditions under which we may employ these
techniques.
- Abstract(参考訳): 金融業界における重要な問題は、規制リスクからポートフォリオリスクまで、リスクの管理を扱う。
このような問題の多くは、分析的に捉えられない複雑なダイナミクスによってモデル化された証券の分析であり、それゆえ、基礎となる変数の確率的性質をシミュレートする数値的手法に依存している。
これらの手法は計算が難しいか要求される。
したがって、これらの手法の改善は量子アルゴリズムの様々な機会を提供する。
本研究では,デリバティブポートフォリオの評価において重要な役割を担う信用評価調整(CVA)の問題について検討する。
本稿では, 量子モンテカルロ(QMC)における既知の手法を用いて, CVAの分散度を近似するために, 統計的サンプリングプロセスを高速化する量子アルゴリズムを提案する。
関連論文リスト
- Quantum Risk Analysis of Financial Derivatives [0.3749861135832073]
本稿では,リスク値(VaR)とリスク条件値(CVaR)を量子コンピュータを用いて計算するための2つの量子アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-15T18:52:30Z) - An Empirical Investigation of Value-Based Multi-objective Reinforcement
Learning for Stochastic Environments [1.26404863283601]
本稿では、値ベースMORL Q-learningアルゴリズムがSER-Optimal Policyを学習する頻度に影響を与える要因について検討する。
これらのアルゴリズムの安定性と収束性に対するノイズQ値推定問題の重大な影響を強調した。
論文 参考訳(メタデータ) (2024-01-06T08:43:08Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Quantum Computational Algorithms for Derivative Pricing and Credit Risk
in a Regime Switching Economy [0.0]
金融市場のリスクを模倣する観点からも現実的なプロセスのクラスを紹介します。
ゲート型量子コンピュータにおける信用リスクとオプション価格を推定するアルゴリズムについて検討する。
論文 参考訳(メタデータ) (2023-11-01T20:15:59Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Capsa: A Unified Framework for Quantifying Risk in Deep Neural Networks [142.67349734180445]
ディープニューラルネットワークにリスク認識を提供する既存のアルゴリズムは複雑でアドホックである。
ここでは、リスク認識でモデルを拡張するためのフレームワークであるcapsaを紹介します。
論文 参考訳(メタデータ) (2023-08-01T02:07:47Z) - Towards practical Quantum Credit Risk Analysis [0.5735035463793008]
CRA (Credit Risk Analysis) の量子アルゴリズムが2次スピードアップで導入された。
我々は、この量子アルゴリズムのいくつかの重要な制限を克服する目的で、新しい変種を提案する。
論文 参考訳(メタデータ) (2022-12-14T09:25:30Z) - Comparing Classical-Quantum Portfolio Optimization with Enhanced
Constraints [0.0]
ポートフォリオ最適化問題に基本的な分析を加え、選択したバランスシートのメトリクスに基づいて資産固有の制約とグローバルな制約を追加する方法について述べる。
我々は、D-Waveの量子プロセッサを用いて、そのような問題を解決するための最先端のアルゴリズムを解析し、商用で利用可能な最適化ソフトウェアで得られるソリューションの品質を比較した。
論文 参考訳(メタデータ) (2022-03-09T17:46:32Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - SAMBA: Safe Model-Based & Active Reinforcement Learning [59.01424351231993]
SAMBAは、確率論的モデリング、情報理論、統計学といった側面を組み合わせた安全な強化学習のためのフレームワークである。
我々は,低次元および高次元の状態表現を含む安全な力学系ベンチマークを用いて,アルゴリズムの評価を行った。
アクティブなメトリクスと安全性の制約を詳細に分析することで,フレームワークの有効性を直感的に評価する。
論文 参考訳(メタデータ) (2020-06-12T10:40:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。