論文の概要: Fusion of Sentiment and Asset Price Predictions for Portfolio
Optimization
- arxiv url: http://arxiv.org/abs/2203.05673v1
- Date: Thu, 10 Mar 2022 23:21:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-14 20:46:59.382211
- Title: Fusion of Sentiment and Asset Price Predictions for Portfolio
Optimization
- Title(参考訳): ポートフォリオ最適化のためのセンチメントと資産価格予測の融合
- Authors: Mufhumudzi Muthivhi, Terence L. van Zyl
- Abstract要約: 本稿では,資産に対する感情を予測するためにセマンティック・アテンション・モデルを用いる。
感情を意識したLong Short Term Memoryを通じて最適なポートフォリオを選択する。
戦略は、安定性の観点から、従来のポートフォリオ割り当て戦略を上回るものではない。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fusion of public sentiment data in the form of text with stock price
prediction is a topic of increasing interest within the financial community.
However, the research literature seldom explores the application of investor
sentiment in the Portfolio Selection problem. This paper aims to unpack and
develop an enhanced understanding of the sentiment aware portfolio selection
problem. To this end, the study uses a Semantic Attention Model to predict
sentiment towards an asset. We select the optimal portfolio through a
sentiment-aware Long Short Term Memory (LSTM) recurrent neural network for
price prediction and a mean-variance strategy. Our sentiment portfolio
strategies achieved on average a significant increase in revenue above the
non-sentiment aware models. However, the results show that our strategy does
not outperform traditional portfolio allocation strategies from a stability
perspective. We argue that an improved fusion of sentiment prediction with a
combination of price prediction and portfolio optimization leads to an enhanced
portfolio selection strategy.
- Abstract(参考訳): 株式価格予測を伴うテキスト形式での世論データの融合は、金融コミュニティ内での関心の高まりのトピックである。
しかし、研究文献はポートフォリオ選択問題における投資家感情の応用をほとんど探求していない。
本稿では,感情認識ポートフォリオ選択問題の理解を深め,解き明かすことを目的とする。
この目的のために、研究はセマンティック・アテンション・モデルを用いて資産に対する感情を予測する。
感情認識型Long Short Term Memory(LSTM)リカレントニューラルネットワークを用いて、価格予測と平均分散戦略により最適なポートフォリオを選択する。
当社のセンチメントポートフォリオ戦略は、非センチメント対応モデルよりも売上が大幅に増加した。
しかし,我々の戦略は,安定性の観点から,従来のポートフォリオ割り当て戦略を上回りません。
我々は、価格予測とポートフォリオ最適化の組み合わせによる感情予測の融合が、ポートフォリオ選択戦略の強化につながると論じる。
関連論文リスト
- Conformal Predictive Portfolio Selection [10.470114319701576]
CPPS(Conformal Predictive Portfolio Selection)と呼ばれる共形推論を用いた予測ポートフォリオ選択のためのフレームワークを提案する。
提案手法は,将来のポートフォリオのリターンを予測し,対応する予測間隔を計算し,これらの間隔に基づいて望ましいポートフォリオを選択する。
本稿では,ARモデルを用いたCPPSフレームワークの有効性を実証し,実証実験による性能評価を行った。
論文 参考訳(メタデータ) (2024-10-19T15:42:49Z) - DeepClair: Utilizing Market Forecasts for Effective Portfolio Selection [29.43115584494825]
ポートフォリオ選択のための新しいフレームワークであるDeepClairを紹介します。
DeepClairは、トランスフォーマーベースの時系列予測モデルを活用して、市場のトレンドを予測する。
論文 参考訳(メタデータ) (2024-07-18T11:51:03Z) - Deep Reinforcement Learning and Mean-Variance Strategies for Responsible Portfolio Optimization [49.396692286192206]
本研究では,ESG状態と目的を取り入れたポートフォリオ最適化のための深層強化学習について検討する。
以上の結果から,ポートフォリオアロケーションに対する平均分散アプローチに対して,深層強化学習政策が競争力を発揮する可能性が示唆された。
論文 参考訳(メタデータ) (2024-03-25T12:04:03Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Model-Free Market Risk Hedging Using Crowding Networks [1.4786952412297811]
群集はポートフォリオ戦略を設計する上で最も重要なリスク要因の1つだと考えられている。
本研究は,株式の集団化スコアの算出に使用されるファンド保有のネットワーク分析を用いて,株式の集団化分析を行う。
本手法は,コストのかかるオプションベースの戦略や複雑な数値最適化を必要としない,テールリスクを含むポートフォリオリスクの代替手段を提供する。
論文 参考訳(メタデータ) (2023-06-13T19:50:03Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Precise Stock Price Prediction for Robust Portfolio Design from Selected
Sectors of the Indian Stock Market [0.0]
私たちは、選択した5つのセクターすべてに対して、最小限の分散ポートフォリオと最適なリスクポートフォリオを構築しました。
最小分散ポートフォリオと等しい重量ポートフォリオを持つ最適リスクポートフォリオの比較研究は、バックテストによって行われます。
論文 参考訳(メタデータ) (2022-01-14T17:24:19Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
近年,Webから抽出したストック概念を用いて共有情報をマイニングし,予測結果を改善する手法が提案されている。
これまでの研究では、ストックとコンセプトのつながりは定常的であり、ストックとコンセプトのダイナミックな関連性を無視していた。
本稿では,事前定義された概念と隠れた概念から,概念指向の共有情報を適切にマイニングできる新しいストックトレンド予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-26T14:04:04Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Deep Learning for Portfolio Optimization [5.833272638548154]
個々の資産を選択する代わりに、ポートフォリオを形成するために市場指標のETF(Exchange-Traded Funds)を交換します。
我々は,本手法を広範囲のアルゴリズムと比較し,本モデルがテスト期間中に最高の性能を得ることを示す。
論文 参考訳(メタデータ) (2020-05-27T21:28:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。