Balancing Consumer and Business Value of Recommender Systems: A
Simulation-based Analysis
- URL: http://arxiv.org/abs/2203.05952v1
- Date: Thu, 10 Mar 2022 12:48:29 GMT
- Title: Balancing Consumer and Business Value of Recommender Systems: A
Simulation-based Analysis
- Authors: Nada Ghanem, Stephan Leitner, Dietmar Jannach
- Abstract summary: This work proposes a simulation framework based on Agent-based Modeling to help providers explore longitudinal dynamics of different recommendation strategies.
We consider network effects where positive and negative experiences are shared with others on social media.
We find that social media can reinforce phenomena like the loss of trust in the case of negative experiences.
- Score: 4.297070083645049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated recommendations can nowadays be found on many online platforms, and
such recommendations can create substantial value for consumers and providers.
Often, however, not all recommendable items have the same profit margin, and
providers might thus be tempted to promote items that maximize their profit. In
the short run, consumers might accept non-optimal recommendations, but they may
lose their trust in the long run. Ultimately, this leads to the problem of
designing balanced recommendation strategies, which consider both consumer and
provider value and lead to sustained business success. This work proposes a
simulation framework based on Agent-based Modeling designed to help providers
explore longitudinal dynamics of different recommendation strategies. In our
model, consumer agents receive recommendations from providers, and the
perceived quality of the recommendations influences the consumers' trust over
time. In addition, we consider network effects where positive and negative
experiences are shared with others on social media. Simulations with our
framework show that balanced strategies that consider both stakeholders indeed
lead to stable consumer trust and sustained profitability. We also find that
social media can reinforce phenomena like the loss of trust in the case of
negative experiences. To ensure reproducibility and foster future research, we
publicly share our flexible simulation framework.
Related papers
- Learning Recommender Systems with Soft Target: A Decoupled Perspective [49.83787742587449]
We propose a novel decoupled soft label optimization framework to consider the objectives as two aspects by leveraging soft labels.
We present a sensible soft-label generation algorithm that models a label propagation algorithm to explore users' latent interests in unobserved feedback via neighbors.
arXiv Detail & Related papers (2024-10-09T04:20:15Z) - Modeling User Retention through Generative Flow Networks [34.74982897470852]
Flow-based modeling technique can back-propagate the retention reward towards each recommended item in the user session.
We show that the flow combined with traditional learning-to-rank objectives eventually optimized a non-discounted cumulative reward for both immediate user feedback and user retention.
arXiv Detail & Related papers (2024-06-10T06:22:18Z) - User Welfare Optimization in Recommender Systems with Competing Content Creators [65.25721571688369]
In this study, we perform system-side user welfare optimization under a competitive game setting among content creators.
We propose an algorithmic solution for the platform, which dynamically computes a sequence of weights for each user based on their satisfaction of the recommended content.
These weights are then utilized to design mechanisms that adjust the recommendation policy or the post-recommendation rewards, thereby influencing creators' content production strategies.
arXiv Detail & Related papers (2024-04-28T21:09:52Z) - A Survey on Fairness-aware Recommender Systems [59.23208133653637]
We present concepts of fairness in different recommendation scenarios, comprehensively categorize current advances, and introduce typical methods to promote fairness in different stages of recommender systems.
Next, we delve into the significant influence that fairness-aware recommender systems exert on real-world industrial applications.
arXiv Detail & Related papers (2023-06-01T07:08:22Z) - Application of Machine Learning for Online Reputation Systems [0.4125187280299248]
This paper proposes a new reputation system using machine learning to predict reliability of consumers from consumer profile.
The proposed model has been evaluated over three MovieLens benchmarking datasets, using 10-Folds cross validation.
arXiv Detail & Related papers (2022-09-10T12:31:40Z) - Personalized multi-faceted trust modeling to determine trust links in
social media and its potential for misinformation management [61.88858330222619]
We present an approach for predicting trust links between peers in social media.
We propose a data-driven multi-faceted trust modeling which incorporates many distinct features for a comprehensive analysis.
Illustrated in a trust-aware item recommendation task, we evaluate the proposed framework in the context of a large Yelp dataset.
arXiv Detail & Related papers (2021-11-11T19:40:51Z) - FEBR: Expert-Based Recommendation Framework for beneficial and
personalized content [77.86290991564829]
We propose FEBR (Expert-Based Recommendation Framework), an apprenticeship learning framework to assess the quality of the recommended content.
The framework exploits the demonstrated trajectories of an expert (assumed to be reliable) in a recommendation evaluation environment, to recover an unknown utility function.
We evaluate the performance of our solution through a user interest simulation environment (using RecSim)
arXiv Detail & Related papers (2021-07-17T18:21:31Z) - Towards Content Provider Aware Recommender Systems: A Simulation Study
on the Interplay between User and Provider Utilities [34.288256311920904]
We build a REINFORCE recommender agent, coined EcoAgent, to optimize a joint objective of user utility and the counterfactual utility lift of the provider associated with the recommended content.
We offer a number of simulated experiments that shed light on both the benefits and the limitations of our approach.
arXiv Detail & Related papers (2021-05-06T00:02:58Z) - Heterogeneous Demand Effects of Recommendation Strategies in a Mobile
Application: Evidence from Econometric Models and Machine-Learning
Instruments [73.7716728492574]
We study the effectiveness of various recommendation strategies in the mobile channel and their impact on consumers' utility and demand levels for individual products.
We find significant differences in effectiveness among various recommendation strategies.
We develop novel econometric instruments that capture product differentiation (isolation) based on deep-learning models of user-generated reviews.
arXiv Detail & Related papers (2021-02-20T22:58:54Z) - Counterfactual Evaluation of Slate Recommendations with Sequential
Reward Interactions [18.90946044396516]
Music streaming, video streaming, news recommendation, and e-commerce services often engage with content in a sequential manner.
Providing and evaluating good sequences of recommendations is therefore a central problem for these services.
We propose a new counterfactual estimator that allows for sequential interactions in the rewards with lower variance in anally unbiased manner.
arXiv Detail & Related papers (2020-07-25T17:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.