論文の概要: Chart-to-Text: Generating Natural Language Descriptions for Charts by
Adapting the Transformer Model
- arxiv url: http://arxiv.org/abs/2010.09142v2
- Date: Sun, 29 Nov 2020 21:17:49 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 03:48:25.126462
- Title: Chart-to-Text: Generating Natural Language Descriptions for Charts by
Adapting the Transformer Model
- Title(参考訳): Chart-to-Text: 変換器モデルの適用によるチャートの自然言語記述の生成
- Authors: Jason Obeid and Enamul Hoque
- Abstract要約: 我々は,新しいデータセットを導入し,グラフの自然言語要約を自動的に生成するニューラルモデルを提案する。
生成された要約は、チャートの解釈を提供し、そのチャートで見られる重要な洞察を伝える。
- 参考スコア(独自算出の注目度): 6.320141734801679
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Information visualizations such as bar charts and line charts are very
popular for exploring data and communicating insights. Interpreting and making
sense of such visualizations can be challenging for some people, such as those
who are visually impaired or have low visualization literacy. In this work, we
introduce a new dataset and present a neural model for automatically generating
natural language summaries for charts. The generated summaries provide an
interpretation of the chart and convey the key insights found within that
chart. Our neural model is developed by extending the state-of-the-art model
for the data-to-text generation task, which utilizes a transformer-based
encoder-decoder architecture. We found that our approach outperforms the base
model on a content selection metric by a wide margin (55.42% vs. 8.49%) and
generates more informative, concise, and coherent summaries.
- Abstract(参考訳): バーチャートやラインチャートのような情報視覚化は、データ探索と洞察の伝達に非常に人気がある。
このような視覚化の解釈と理解は、視覚障害者や視覚リテラシーの低さなど、一部の人にとっては困難である。
本稿では,新しいデータセットを導入し,グラフの自然言語要約を自動的に生成するニューラルモデルを提案する。
生成された要約は、チャートの解釈を提供し、チャート内の重要な洞察を伝える。
我々のニューラルモデルは、トランスフォーマーベースのエンコーダデコーダアーキテクチャを利用するデータ・テキスト生成タスクの最先端モデルを拡張して開発されている。
当社のアプローチは,コンテンツ選択指標のベースモデルを広いマージン(55.42%対8.49%)で上回っており,より情報的,簡潔,一貫性のある要約を生成する。
関連論文リスト
- On Pre-training of Multimodal Language Models Customized for Chart Understanding [83.99377088129282]
本稿では,MLLMのチャート理解を改善するために必要な学習過程について考察する。
詳細なチャート理解に適したMLLMであるCHOPINLLMを紹介する。
論文 参考訳(メタデータ) (2024-07-19T17:58:36Z) - ChartGemma: Visual Instruction-tuning for Chart Reasoning in the Wild [28.643565008567172]
本稿では,PaliGemma上で開発された新しいチャート理解と推論モデルであるChartGemmaを紹介する。
基礎となるデータテーブルに頼るのではなく、ChartGemmaは、チャートイメージから直接生成されたインストラクションチューニングデータに基づいて訓練される。
我々の単純なアプローチは、チャートの要約、質問応答、ファクトチェックにまたがる5ドルのベンチマークで最先端の結果を得る。
論文 参考訳(メタデータ) (2024-07-04T22:16:40Z) - When Graph Data Meets Multimodal: A New Paradigm for Graph Understanding
and Reasoning [54.84870836443311]
本稿では,画像エンコーディングとマルチモーダル技術を統合することで,グラフデータの理解と推論を行う新しいパラダイムを提案する。
このアプローチは, GPT-4Vの高度な機能を利用して, 命令応答形式によるグラフデータの理解を可能にする。
研究は、このパラダイムを様々なグラフタイプで評価し、特に中国のOCRパフォーマンスと複雑な推論タスクにおいて、モデルの強みと弱みを強調した。
論文 参考訳(メタデータ) (2023-12-16T08:14:11Z) - VisText: A Benchmark for Semantically Rich Chart Captioning [12.117737635879037]
VisTextは、チャートの構成を記述した12,441組のチャートとキャプションのデータセットである。
我々のモデルはコヒーレントで意味的に豊かなキャプションを生成し、最先端のチャートキャプションモデルと同等に機能する。
論文 参考訳(メタデータ) (2023-06-28T15:16:24Z) - ChartSumm: A Comprehensive Benchmark for Automatic Chart Summarization
of Long and Short Summaries [0.26097841018267615]
テキスト要約の自動チャートは視覚障害者に有効なツールである。
本稿では,84,363個のグラフからなる大規模ベンチマークデータセットであるChartSummを提案する。
論文 参考訳(メタデータ) (2023-04-26T15:25:24Z) - ChartReader: A Unified Framework for Chart Derendering and Comprehension
without Heuristic Rules [89.75395046894809]
ChartReaderは、チャートのデレンダリングと理解タスクをシームレスに統合する統合フレームワークです。
提案手法には,トランスフォーマーに基づくチャートコンポーネント検出モジュールと,チャートからXまでのタスクに対する事前学習型視覚言語モデルが組み込まれている。
提案するフレームワークは,チャート解析に係わる作業を大幅に削減し,ユニバーサルチャート理解モデルへの一歩を踏み出すことができる。
論文 参考訳(メタデータ) (2023-04-05T00:25:27Z) - Chart-to-Text: A Large-Scale Benchmark for Chart Summarization [9.647079534077472]
2つのデータセットと44,096のチャートを持つ大規模ベンチマークであるChart-to-textを提示する。
データセット構築プロセスを説明し、データセットを解析する。
論文 参考訳(メタデータ) (2022-03-12T17:01:38Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
階層的にGNNコンポーネントを言語モデルのトランスフォーマーブロックと一緒にネストするGraphFormerを提案する。
提案したアーキテクチャでは、テキストエンコーディングとグラフ集約を反復的なワークフローに融合する。
さらに、プログレッシブ・ラーニング・ストラテジーを導入し、そのモデルが操作されたデータと元のデータに基づいて連続的に訓練され、グラフ上の情報を統合する能力を強化する。
論文 参考訳(メタデータ) (2021-05-06T12:20:41Z) - Promoting Graph Awareness in Linearized Graph-to-Text Generation [72.83863719868364]
局所グラフ構造を符号化する線形化モデルの能力を検討する。
本研究は,モデルの暗黙のグラフ符号化の品質を高めるための解法である。
これらの消音足場は、低リソース設定における下流生成の大幅な改善につながることが分かりました。
論文 参考訳(メタデータ) (2020-12-31T18:17:57Z) - Scene Graph Modification Based on Natural Language Commands [90.0662899539489]
グラフやパースツリーのような構造化表現は多くの自然言語処理システムにおいて重要な役割を果たす。
本稿では,新しい利用者の指示に応じて既存のグラフの更新方法を学ぶ必要がある,グラフ修正の新たな課題について考察する。
論文 参考訳(メタデータ) (2020-10-06T10:01:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。