論文の概要: Investigating the Impact of COVID-19 on Education by Social Network
Mining
- arxiv url: http://arxiv.org/abs/2203.06584v1
- Date: Sun, 13 Mar 2022 06:23:16 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-15 16:18:06.235766
- Title: Investigating the Impact of COVID-19 on Education by Social Network
Mining
- Title(参考訳): ソーシャル・ネットワーク・マイニングによる教育におけるcovid-19の影響調査
- Authors: Mohadese Jamalian, Hamed Vahdat-Nejad, Hamideh Hajiabadi
- Abstract要約: コビッドウイルスと教育に関連する多くのツイートはジオネームスの地理データベースの助けを借りて検討され、ジオタグ付けされている。
コビッド19の確認件数の多い国では, 総ツイート数, 正ツイート数, 負ツイート数の増加傾向が認められた。
- 参考スコア(独自算出の注目度): 1.933681537640272
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Covid-19 virus has been one of the most discussed topics on social
networks in 2020 and 2021 and has affected the classic educational paradigm,
worldwide. In this research, many tweets related to the Covid-19 virus and
education are considered and geo-tagged with the help of the GeoNames
geographic database, which contains a large number of place names. To detect
the feeling of users, sentiment analysis is performed using the RoBERTa
language-based model. Finally, we obtain the trends of frequency of total,
positive, and negative tweets for countries with a high number of Covid-19
confirmed cases. Investigating the results reveals a correlation between the
trends of tweet frequency and the official statistic of confirmed cases for
several countries.
- Abstract(参考訳): コビッドウイルスは、2020年と2021年のソーシャルネットワークで最も議論されたトピックの一つであり、世界中の古典的な教育パラダイムに影響を与えてきた。
本研究では,地理情報データベース「geonames geographic database」を用いて,新型コロナウイルス(covid-19)と教育に関する多くのつぶやきを検討・タグ付けした。
ユーザの感情を検出するために,RoBERTa言語モデルを用いて感情分析を行う。
最後に,コビッド19の確認件数の多い国では,総ツイート数,肯定ツイート数,否定ツイート数が増加傾向にある。
調査の結果、複数の国で確認されたケースのツイート頻度と公式統計値の相関が明らかになった。
関連論文リスト
- Twitter conversations predict the daily confirmed COVID-19 cases [0.2320417845168326]
パンデミック特有の談話は、TwitterやWeiboのようなマイクロブログプラットフォーム上では、今も続いている。
本稿では、新型コロナウイルス関連Twitter会話から複数の時系列を設計するための感情関連トピックベースの方法論を提案する。
モデリングにソーシャルメディア変数を組み込むことで、RMSEのベースラインモデルよりも48.83-51.38%の改善がもたらされることが示されている。
論文 参考訳(メタデータ) (2022-06-21T15:31:06Z) - "COVID-19 was a FIFA conspiracy #curropt": An Investigation into the
Viral Spread of COVID-19 Misinformation [60.268682953952506]
我々は、自然言語処理モデルを用いて、誤報がCOVID-19パンデミックの進行にどのような影響を及ぼしたかを推定する。
我々は、広範囲に害をもたらす可能性のあるソーシャルメディアポストと戦うための戦略を提供する。
論文 参考訳(メタデータ) (2022-06-12T19:41:01Z) - Extracting Feelings of People Regarding COVID-19 by Social Network
Mining [0.0]
英語における新型コロナウイルス関連ツイートのデータセットが収集される。
2020年3月23日から6月23日までに200万件以上のツイートが分析されている。
論文 参考訳(メタデータ) (2021-10-12T16:45:33Z) - American Twitter Users Revealed Social Determinants-related Oral Health
Disparities amid the COVID-19 Pandemic [72.44305630014534]
新型コロナウイルス(COVID-19)パンデミックの期間中に、26州で9,104人のTwitterユーザーから、口腔の健康関連ツイートを収集しました。
女性や若年者(19-29)は口腔の健康問題について話す傾向が強い。
新型コロナウイルス(COVID-19)のリスクが高い郡の人々は、歯の腐敗や歯の出血、歯の破折について語っています。
論文 参考訳(メタデータ) (2021-09-16T01:10:06Z) - Sentiment Analysis of Covid-19 Tweets using Evolutionary
Classification-Based LSTM Model [0.6445605125467573]
本稿では,コロナウイルスやコビッドウイルスに関する大量のツイートの感情分析について述べる。
我々は、進化的分類とn-gram分析によるCovid-19流行に関連するトピックに対する世論感情の傾向を分析した。
我々は、Covid-19のデータに対する感情を予測するために、2種類の評価されたつぶやきを使用して、長期間のネットワークを訓練し、全体の精度は84.46%に達した。
論文 参考訳(メタデータ) (2021-06-13T04:27:21Z) - Country Image in COVID-19 Pandemic: A Case Study of China [79.17323278601869]
国像は国際関係と経済発展に大きな影響を与えている。
新型コロナウイルス(COVID-19)の世界的な流行で、各国と国民は異なる反応を見せている。
本研究では,中国を具体的かつ典型的な事例として捉え,大規模Twitterデータセットのアスペクトベース感情分析を用いてそのイメージを考察する。
論文 参考訳(メタデータ) (2020-09-12T15:54:51Z) - An Exploratory Study of COVID-19 Information on Twitter in the Greater
Region [4.696697601424039]
本稿では,Twitter COVID-19 情報をデータ駆動で探索し,その特徴を明らかにすることを目的とする。
GRと関連する国々のツイート量と新型コロナウイルスのケースは相関関係にあるが、この相関関係はパンデミックの特定の期間にのみ存在する。
2020-01-22 から 2020-06-05 への移行を計画し、GR と関連する国の主な違いを解明する。
論文 参考訳(メタデータ) (2020-08-12T16:37:58Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
重症急性呼吸器症候群2号(SARS-CoV-2)による新型コロナウイルス感染症(COVID-19)の流行は、世界中の人々の生活や社会に影響を与え続けている。
私たちは複数のデータソース、すなわちPubMedとArXivを使用し、現在のCOVID-19研究の風景を特徴づけるために、いくつかの機械学習モデルを構築しました。
調査の結果,PubMedとArXivで利用可能な研究の種類は異なることが確認された。
論文 参考訳(メタデータ) (2020-07-22T18:02:39Z) - Cross-lingual Transfer Learning for COVID-19 Outbreak Alignment [90.12602012910465]
われわれは、Twitterを通じてイタリアの新型コロナウイルス感染症(COVID-19)の早期流行を訓練し、他のいくつかの国に移る。
実験の結果,クロスカントリー予測において最大0.85のスピアマン相関が得られた。
論文 参考訳(メタデータ) (2020-06-05T02:04:25Z) - Critical Impact of Social Networks Infodemic on Defeating Coronavirus
COVID-19 Pandemic: Twitter-Based Study and Research Directions [1.6571886312953874]
2019年の推計295億人が世界中でソーシャルメディアを利用している。
コロナウイルスの流行は、ソーシャルメディアの津波を引き起こした。
本稿では,Twitterから収集したデータに基づく大規模研究について述べる。
論文 参考訳(メタデータ) (2020-05-18T15:53:13Z) - The Ivory Tower Lost: How College Students Respond Differently than the
General Public to the COVID-19 Pandemic [66.80677233314002]
新型コロナウイルス感染症(COVID-19)のパンデミックは、政府に究極の課題を提示した。
米国では、新型コロナウイルス感染者が最も多い国で、全国的なソーシャルディスタンシングプロトコルが大統領によって実施されている。
本稿では,この対話型社会における前例のない破壊の社会的意義を,ソーシャルメディア上での人々の意見のマイニングによって発見することを目的とする。
論文 参考訳(メタデータ) (2020-04-21T13:02:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。