論文の概要: Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement
Learning Perspective
- arxiv url: http://arxiv.org/abs/2203.06865v3
- Date: Sun, 19 Mar 2023 01:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-24 05:06:26.806027
- Title: Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement
Learning Perspective
- Title(参考訳): デリバティブ価格モデルのキャリブレーション:マルチエージェント強化学習の視点から
- Authors: Nelson Vadori
- Abstract要約: この問題のゲーム理論の定式化が,この問題の解決にいかに役立つかを示す。
我々の実験は、ベルムダンオプションの価格を最小化するために、局所的なボラティリティと、ボラティリティプロセスに必要なパス依存性を学習できることを示しています。
粒子は$sigma_loc(t,S_t)2 = mathbbE[sigma_t2|S_t]$,
- 参考スコア(独自算出の注目度): 1.52292571922932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most fundamental questions in quantitative finance is the
existence of continuous-time diffusion models that fit market prices of a given
set of options. Traditionally, one employs a mix of intuition, theoretical and
empirical analysis to find models that achieve exact or approximate fits. Our
contribution is to show how a suitable game theoretical formulation of this
problem can help solve this question by leveraging existing developments in
modern deep multi-agent reinforcement learning to search in the space of
stochastic processes. More importantly, we hope that our techniques can be
leveraged and extended by the community to solve important problems in that
field, such as the joint SPX-VIX calibration problem. Our experiments show that
we are able to learn local volatility, as well as path-dependence required in
the volatility process to minimize the price of a Bermudan option. Our
algorithm can be seen as a particle method \`{a} la Guyon et Henry-Labordere
where particles, instead of being designed to ensure $\sigma_{loc}(t,S_t)^2 =
\mathbb{E}[\sigma_t^2|S_t]$, are learning RL-driven agents cooperating towards
more general calibration targets.
- Abstract(参考訳): 量的金融における最も基本的な問題の1つは、与えられたオプションセットの市場価格に適合する連続時間拡散モデルの存在である。
伝統的に、直観、理論的、実証的な分析の混合を用いて、正確なあるいは近似的な適合を達成するモデルを見つける。
本研究は,近年の深層マルチエージェント強化学習における既存の発展を活用し,確率過程の分野における探索に適切なゲーム理論的定式化がいかに役立つかを示すことを目的とする。
さらに,SPX-VIXキャリブレーション問題など,その分野で重要な問題を解決するために,コミュニティが我々の技術を活用し,拡張できることを願っている。
実験では,局所的なボラティリティや,ボラティリティプロセスに必要な経路依存性を学習し,ベルムダンオプションの価格を最小限に抑えることができた。
我々のアルゴリズムは、粒子が$\sigma_{loc}(t,S_t)^2 = \mathbb{E}[\sigma_t^2|S_t]$を確実にする代わりに、より一般的なキャリブレーションターゲットに向けて協調するRL駆動のエージェントを学習する粒子法である。
関連論文リスト
- Scalable Discrete Diffusion Samplers: Combinatorial Optimization and Statistical Physics [7.873510219469276]
離散拡散サンプリングのための2つの新しいトレーニング手法を提案する。
これらの手法は、メモリ効率のトレーニングを行い、教師なし最適化の最先端結果を達成する。
SN-NISとニューラルチェインモンテカルロの適応を導入し,離散拡散モデルの適用を初めて可能とした。
論文 参考訳(メタデータ) (2025-02-12T18:59:55Z) - Model-free Methods for Event History Analysis and Efficient Adjustment (PhD Thesis) [55.2480439325792]
この論文は、モデルフリーの観点から統一された統計学への独立した貢献のシリーズである。
第1章では、機械学習から予測技術を活用する柔軟なメソッドを定式化するために、モデルフリーの視点をどのように利用できるか、詳しく説明している。
第2章では、あるプロセスの進化が他のプロセスに直接影響されるかどうかを記述した地域独立の概念を研究している。
論文 参考訳(メタデータ) (2025-02-11T19:24:09Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
モデルで学習した情報を活用することにより、より確実に離散化誤差に対処できる情報修正系を提案する。
また,$k$-Gillespie'sも提案する。これは,各モデル評価をよりよく活用するサンプリングアルゴリズムで,$tau$-leapingの速度と柔軟性を引き続き享受する。
いくつかの実・合成データセットにおいて,情報付き修正器を用いた$k$-Gillespieは,より低い計算コストで高い品質のサンプルを確実に生成することを示す。
論文 参考訳(メタデータ) (2024-07-30T23:29:29Z) - Kullback-Leibler Barycentre of Stochastic Processes [0.0]
エージェントが様々な専門家のモデルに対する見解と洞察を組み合わせることを目的とした問題を考える。
バリセントモデルの存在と特異性を示し、ラドン-ニコディム微分の明示的な表現を証明する。
合成モデルの最適ドリフトを求めるために,2つのディープラーニングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-05T20:45:27Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Towards Sobolev Pruning [0.0]
本稿では,学習および刈り取り過程を通じて感度情報を用いて代理モデルを見つけることを提案する。
本研究は,近年のソボレフ訓練の進歩と相まって,インターバル・アジョイント・重要度分析を用いて作業を構築している。
ブラウン運動を持つ微分方程式をモデルとした多次元オプションの価格設定の例について実験的に検討した。
論文 参考訳(メタデータ) (2023-12-06T14:13:30Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
我々は拡散モデルのデータ生成過程を理解するための非漸近理論のスイートを開発する。
従来の研究とは対照的に,本理論は基本的だが多目的な非漸近的アプローチに基づいて開発されている。
論文 参考訳(メタデータ) (2023-06-15T16:30:08Z) - Diffusion models as plug-and-play priors [98.16404662526101]
我々は、事前の$p(mathbfx)$と補助的な制約である$c(mathbfx,mathbfy)$からなるモデルにおいて、高次元データ$mathbfx$を推論する問題を考える。
拡散モデルの構造は,異なるノイズ量に富んだ定性デノナイジングネットワークを通じて,微分を反復することで近似推論を行うことができる。
論文 参考訳(メタデータ) (2022-06-17T21:11:36Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
現在のベストプラクティスは、フォワードダイナミクスが既知の単純なノイズ分布に十分に近づくことを確実にするために大きなTを提唱している。
本稿では, 理想とシミュレーションされたフォワードダイナミクスのギャップを埋めるために補助モデルを用いて, 標準的な逆拡散過程を導出する方法について述べる。
論文 参考訳(メタデータ) (2022-06-10T15:09:46Z) - Distributionally Robust Models with Parametric Likelihood Ratios [123.05074253513935]
3つの単純なアイデアにより、より広いパラメトリックな確率比のクラスを用いてDROでモデルを訓練することができる。
パラメトリック逆数を用いてトレーニングしたモデルは、他のDROアプローチと比較して、サブポピュレーションシフトに対して一貫して頑健であることがわかった。
論文 参考訳(メタデータ) (2022-04-13T12:43:12Z) - Compressed particle methods for expensive models with application in
Astronomy and Remote Sensing [15.874578163779047]
そこで本研究では,高コストモデルの評価を行う手法を提案する。
いくつかの数値実験において, 提案手法の有効性を実証的に証明し, 提案手法を理論的に検証した。
そのうちの2つは、天文学と衛星リモートセンシングにおける現実世界の応用である。
論文 参考訳(メタデータ) (2021-07-18T14:45:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。