論文の概要: New quantum neural network designs
- arxiv url: http://arxiv.org/abs/2203.07872v1
- Date: Sat, 12 Mar 2022 10:20:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-22 07:28:04.856246
- Title: New quantum neural network designs
- Title(参考訳): 新しい量子ニューラルネットワークの設計
- Authors: Felix Petitzon
- Abstract要約: 本稿では,新しい量子ニューラルネットワークの設計性能について検討する。
我々は特徴マップと変分回路を1つのパラメータ化回路にマージする新しい手法を開発した。
損失の低減、精度の向上、収束の高速化を実現しています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computers promise improving machine learning. We investigated the
performance of new quantum neural network designs. Quantum neural networks
currently employed rely on a feature map to encode the input into a quantum
state. This state is then evolved via a parameterized variational circuit.
Finally, a measurement is performed and post-processed on a classical computer
to extract the prediction of the quantum model. We develop a new technique,
where we merge feature map and variational circuit into a single parameterized
circuit and post-process the results using a classical neural network. On a
variety of real and generated datasets, we show that the new, combined approach
outperforms the separated feature map & variational circuit method. We achieve
lower loss, better accuracy, and faster convergence.
- Abstract(参考訳): 量子コンピュータは機械学習を改善することを約束する。
我々は,新しい量子ニューラルネットワークの設計性能について検討した。
量子ニューラルネットワークは現在、入力を量子状態にエンコードする機能マップに依存している。
この状態はパラメータ化された変分回路によって進化する。
最後に、古典的なコンピュータ上で測定を行い、後処理して量子モデルの予測を抽出する。
特徴写像と変分回路を1つのパラメータ化回路にマージし、古典的ニューラルネットワークを用いて結果を後処理する新しい手法を開発した。
様々な実データと生成されたデータセットにおいて、新しい結合アプローチが分離された特徴マップと変分回路法よりも優れていることを示す。
損失の低減、精度の向上、より高速な収束を実現します。
関連論文リスト
- Let the Quantum Creep In: Designing Quantum Neural Network Models by
Gradually Swapping Out Classical Components [1.024113475677323]
現代のAIシステムはニューラルネットワーク上に構築されることが多い。
古典的ニューラルネットワーク層を量子層に置き換える枠組みを提案する。
画像分類データセットの数値実験を行い、量子部品の体系的導入による性能変化を実証する。
論文 参考訳(メタデータ) (2024-09-26T07:01:29Z) - Learning To Optimize Quantum Neural Network Without Gradients [3.9848482919377006]
本稿では,量子回路のパラメータを出力するために,Emphmeta-Optimizerネットワークをトレーニングする新しいメタ最適化アルゴリズムを提案する。
我々は,従来の勾配に基づくアルゴリズムよりも回路評価が少ない場合に,より高品質な最小値が得られることを示す。
論文 参考訳(メタデータ) (2023-04-15T01:09:12Z) - A didactic approach to quantum machine learning with a single qubit [68.8204255655161]
我々は、データ再ロード技術を用いて、単一のキュービットで学習するケースに焦点を当てる。
我々は、Qiskit量子コンピューティングSDKを用いて、おもちゃと現実世界のデータセットに異なる定式化を実装した。
論文 参考訳(メタデータ) (2022-11-23T18:25:32Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
本稿では,ノード間の局所的なメッセージパッシングをクロスゲート量子演算のシーケンスで学習する量子グラフ畳み込みネットワーク(QuanGCN)を提案する。
現代の量子デバイスから固有のノイズを緩和するために、ノードの接続をスパーズするためにスパース制約を適用します。
我々のQuanGCNは、いくつかのベンチマークグラフデータセットの古典的なアルゴリズムよりも機能的に同等か、さらに優れている。
論文 参考訳(メタデータ) (2022-11-09T21:43:16Z) - A Hybrid Quantum-Classical Neural Network Architecture for Binary
Classification [0.0]
本稿では,各ニューロンが変動量子回路であるハイブリッド量子古典ニューラルネットワークアーキテクチャを提案する。
シミュレーションハードウェアでは、ハイブリッドニューラルネットワークは、個々の変動量子回路よりも約10%高い分類精度とコストの20%の最小化を実現している。
論文 参考訳(メタデータ) (2022-01-05T21:06:30Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - A Quantum Convolutional Neural Network for Image Classification [7.745213180689952]
量子畳み込みニューラルネットワーク(QCNN)という新しいニューラルネットワークモデルを提案する。
QCNNは実装可能な量子回路に基づいており、古典的畳み込みニューラルネットワークと同様の構造を持つ。
MNISTデータセットの数値シミュレーションにより,本モデルの有効性が示された。
論文 参考訳(メタデータ) (2021-07-08T06:47:34Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Variational learning for quantum artificial neural networks [0.0]
まず、量子プロセッサ上での人工ニューロンとフィードフォワードニューラルネットワークの実装について、最近の一連の研究を概説する。
次に、変分アンサンプリングプロトコルに基づく効率的な個別量子ノードのオリジナル実現を提案する。
メモリ効率の高いフィードフォワードアーキテクチャとの完全な互換性を維持しながら、単一ニューロンの活性化確率を決定するのに必要な量子回路深さを効果的に削減する。
論文 参考訳(メタデータ) (2021-03-03T16:10:15Z) - Quantum Deformed Neural Networks [83.71196337378022]
我々は,量子コンピュータ上で効率的に動作するように設計された新しい量子ニューラルネットワーク層を開発した。
入力状態の絡み合いに制限された場合、古典的なコンピュータでシミュレートすることができる。
論文 参考訳(メタデータ) (2020-10-21T09:46:12Z) - Machine learning transfer efficiencies for noisy quantum walks [62.997667081978825]
グラフ型と量子系コヒーレンスの両方の要件を見つけるプロセスは自動化可能であることを示す。
この自動化は、特定のタイプの畳み込みニューラルネットワークを使用して、どのネットワークで、どのコヒーレンス要求の量子優位性が可能かを学習する。
我々の結果は、量子実験における利点の実証と、科学的研究と発見の自動化への道を開くために重要である。
論文 参考訳(メタデータ) (2020-01-15T18:36:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。