Learning Expanding Graphs for Signal Interpolation
- URL: http://arxiv.org/abs/2203.07966v1
- Date: Tue, 15 Mar 2022 14:51:29 GMT
- Title: Learning Expanding Graphs for Signal Interpolation
- Authors: Bishwadeep Das, Elvin Isufi
- Abstract summary: We propose an attachment model for incoming nodes parameterized by the probabilities and connectivity of the specific node.
We study real data dealing in cold start collaborative recommendations.
- Score: 14.84852576248587
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Performing signal processing over graphs requires knowledge of the underlying
fixed topology. However, graphs often grow in size with new nodes appearing
over time, whose connectivity is typically unknown; hence, making more
challenging the downstream tasks in applications like cold start
recommendation. We address such a challenge for signal interpolation at the
incoming nodes blind to the topological connectivity of the specific node.
Specifically, we propose a stochastic attachment model for incoming nodes
parameterized by the attachment probabilities and edge weights. We estimate
these parameters in a data-driven fashion by relying only on the attachment
behaviour of earlier incoming nodes with the goal of interpolating the signal
value. We study the non-convexity of the problem at hand, derive conditions
when it can be marginally convexified, and propose an alternating projected
descent approach between estimating the attachment probabilities and the edge
weights. Numerical experiments with synthetic and real data dealing in cold
start collaborative filtering corroborate our findings.
Related papers
- Multitask Active Learning for Graph Anomaly Detection [48.690169078479116]
We propose a novel MultItask acTIve Graph Anomaly deTEction framework, namely MITIGATE.
By coupling node classification tasks, MITIGATE obtains the capability to detect out-of-distribution nodes without known anomalies.
Empirical studies on four datasets demonstrate that MITIGATE significantly outperforms the state-of-the-art methods for anomaly detection.
arXiv Detail & Related papers (2024-01-24T03:43:45Z) - BOURNE: Bootstrapped Self-supervised Learning Framework for Unified
Graph Anomaly Detection [50.26074811655596]
We propose a novel unified graph anomaly detection framework based on bootstrapped self-supervised learning (named BOURNE)
By swapping the context embeddings between nodes and edges, we enable the mutual detection of node and edge anomalies.
BOURNE can eliminate the need for negative sampling, thereby enhancing its efficiency in handling large graphs.
arXiv Detail & Related papers (2023-07-28T00:44:57Z) - NodeFormer: A Scalable Graph Structure Learning Transformer for Node
Classification [70.51126383984555]
We introduce a novel all-pair message passing scheme for efficiently propagating node signals between arbitrary nodes.
The efficient computation is enabled by a kernerlized Gumbel-Softmax operator.
Experiments demonstrate the promising efficacy of the method in various tasks including node classification on graphs.
arXiv Detail & Related papers (2023-06-14T09:21:15Z) - Is Rewiring Actually Helpful in Graph Neural Networks? [11.52174067809364]
We propose an evaluation setting based on message-passing models that do not require training to compute node and graph representations.
We perform a systematic experimental comparison on real-world node and graph classification tasks, showing that rewiring the underlying graph rarely does confer a practical benefit for message-passing.
arXiv Detail & Related papers (2023-05-31T10:12:23Z) - Joint graph learning from Gaussian observations in the presence of
hidden nodes [26.133725549667734]
We propose a joint graph learning method that takes into account the presence of hidden (latent) variables.
We exploit the structure resulting from the previous considerations to propose a convex optimization problem.
We compare the proposed algorithm with different baselines and evaluate its performance over synthetic and real-world graphs.
arXiv Detail & Related papers (2022-12-04T13:03:41Z) - Data-heterogeneity-aware Mixing for Decentralized Learning [63.83913592085953]
We characterize the dependence of convergence on the relationship between the mixing weights of the graph and the data heterogeneity across nodes.
We propose a metric that quantifies the ability of a graph to mix the current gradients.
Motivated by our analysis, we propose an approach that periodically and efficiently optimize the metric.
arXiv Detail & Related papers (2022-04-13T15:54:35Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Detecting Communities from Heterogeneous Graphs: A Context Path-based
Graph Neural Network Model [23.525079144108567]
We build a Context Path-based Graph Neural Network (CP-GNN) model.
It embeds the high-order relationship between nodes into the node embedding.
It outperforms the state-of-the-art community detection methods.
arXiv Detail & Related papers (2021-09-05T12:28:00Z) - Explicit Pairwise Factorized Graph Neural Network for Semi-Supervised
Node Classification [59.06717774425588]
We propose the Explicit Pairwise Factorized Graph Neural Network (EPFGNN), which models the whole graph as a partially observed Markov Random Field.
It contains explicit pairwise factors to model output-output relations and uses a GNN backbone to model input-output relations.
We conduct experiments on various datasets, which shows that our model can effectively improve the performance for semi-supervised node classification on graphs.
arXiv Detail & Related papers (2021-07-27T19:47:53Z) - Learning to Extrapolate Knowledge: Transductive Few-shot Out-of-Graph
Link Prediction [69.1473775184952]
We introduce a realistic problem of few-shot out-of-graph link prediction.
We tackle this problem with a novel transductive meta-learning framework.
We validate our model on multiple benchmark datasets for knowledge graph completion and drug-drug interaction prediction.
arXiv Detail & Related papers (2020-06-11T17:42:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.