Approximate Decision Trees For Machine Learning Classification on Tiny
Printed Circuits
- URL: http://arxiv.org/abs/2203.08011v1
- Date: Tue, 15 Mar 2022 15:47:59 GMT
- Title: Approximate Decision Trees For Machine Learning Classification on Tiny
Printed Circuits
- Authors: Konstantinos Balaskas, Georgios Zervakis, Kostas Siozios, Mehdi B.
Tahoori, Joerg Henkel
- Abstract summary: Printed Electronics (PE) cannot compete with silicon-based systems in conventional evaluation metrics.
PE offers attractive properties such as on-demand ultra-low-cost fabrication, flexibility and non-toxicity.
Despite the attractive characteristics of PE, the large feature sizes in PE prohibit the realization of complex printed circuits.
- Score: 0.7349727826230862
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although Printed Electronics (PE) cannot compete with silicon-based systems
in conventional evaluation metrics, e.g., integration density, area and
performance, PE offers attractive properties such as on-demand ultra-low-cost
fabrication, flexibility and non-toxicity. As a result, it targets application
domains that are untouchable by lithography-based silicon electronics and thus
have not yet seen much proliferation of computing. However, despite the
attractive characteristics of PE, the large feature sizes in PE prohibit the
realization of complex printed circuits, such as Machine Learning (ML)
classifiers. In this work, we exploit the hardware-friendly nature of Decision
Trees for machine learning classification and leverage the hardware-efficiency
of the approximate design in order to generate approximate ML classifiers that
are suitable for tiny, ultra-resource constrained, and battery-powered printed
applications.
Related papers
- Embedding Hardware Approximations in Discrete Genetic-based Training for Printed MLPs [1.4694098707981968]
Printed Electronics (PE) enables stretchable, conformal,and non-toxic hardware.
PE are constrained by larger feature sizes, making it challenging to implement complex circuits such as machine learning (ML)aware circuits.
In this paper, we maximize the benefits of approximate computing by integrating hardware approximation into the training process.
arXiv Detail & Related papers (2024-02-05T11:52:23Z) - Bespoke Approximation of Multiplication-Accumulation and Activation Targeting Printed Multilayer Perceptrons [0.8274768545559366]
Printed Electronics (PE) offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing costs, and on-demand fabrication.
PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits.
We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers.
arXiv Detail & Related papers (2023-12-29T14:16:11Z) - On-sensor Printed Machine Learning Classification via Bespoke ADC and
Decision Tree Co-Design [3.919502921806021]
Printed electronics (PE) technology provides cost-effective hardware with unmet customization, due to their low non-recurring engineering and fabrication costs.
PE exhibit features such as flexibility, stretchability, porosity, and conformality, which make them a prominent candidate for enabling ubiquitous computing.
We propose the design of fully customized ADCs and present, for the first time, a co-design framework for generating bespoke Decision Tree classifiers.
arXiv Detail & Related papers (2023-12-02T16:28:09Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Model-to-Circuit Cross-Approximation For Printed Machine Learning
Classifiers [4.865819809855699]
Printed electronics (PE) promises on-demand fabrication, low non-recurring engineering costs, and sub-cent fabrication costs.
Large feature sizes in PE prohibit the realization of complex ML models in PE, even with bespoke architectures.
We present an automated, cross-layer approximation framework tailored to bespoke architectures that enable complex ML models in PE.
arXiv Detail & Related papers (2023-03-14T22:11:34Z) - Co-Design of Approximate Multilayer Perceptron for Ultra-Resource
Constrained Printed Circuits [4.865819809855699]
Large feature sizes in Printed Electronics (PE) prohibit the realization of complex printed machine learning circuits.
We present, for the first time, an automated printed-aware software/hardware co-design framework that exploits approximate computing principles to enable ultra-resource constrained printed multilayer perceptrons (MLPs)
Our evaluation demonstrates that, compared to the state-of-the-art baseline, our circuits feature on average 6x (5.7x) lower area (power) and less than 1% accuracy loss.
arXiv Detail & Related papers (2023-02-28T13:55:19Z) - Unifying Synergies between Self-supervised Learning and Dynamic
Computation [53.66628188936682]
We present a novel perspective on the interplay between SSL and DC paradigms.
We show that it is feasible to simultaneously learn a dense and gated sub-network from scratch in a SSL setting.
The co-evolution during pre-training of both dense and gated encoder offers a good accuracy-efficiency trade-off.
arXiv Detail & Related papers (2023-01-22T17:12:58Z) - ETLP: Event-based Three-factor Local Plasticity for online learning with
neuromorphic hardware [105.54048699217668]
We show a competitive performance in accuracy with a clear advantage in the computational complexity for Event-Based Three-factor Local Plasticity (ETLP)
We also show that when using local plasticity, threshold adaptation in spiking neurons and a recurrent topology are necessary to learntemporal patterns with a rich temporal structure.
arXiv Detail & Related papers (2023-01-19T19:45:42Z) - Fundamental Limits of Two-layer Autoencoders, and Achieving Them with
Gradient Methods [91.54785981649228]
This paper focuses on non-linear two-layer autoencoders trained in the challenging proportional regime.
Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods.
For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders.
arXiv Detail & Related papers (2022-12-27T12:37:34Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Predictive Coding Approximates Backprop along Arbitrary Computation
Graphs [68.8204255655161]
We develop a strategy to translate core machine learning architectures into their predictive coding equivalents.
Our models perform equivalently to backprop on challenging machine learning benchmarks.
Our method raises the potential that standard machine learning algorithms could in principle be directly implemented in neural circuitry.
arXiv Detail & Related papers (2020-06-07T15:35:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.