Bespoke Approximation of Multiplication-Accumulation and Activation Targeting Printed Multilayer Perceptrons
- URL: http://arxiv.org/abs/2312.17612v3
- Date: Thu, 14 Nov 2024 10:22:05 GMT
- Title: Bespoke Approximation of Multiplication-Accumulation and Activation Targeting Printed Multilayer Perceptrons
- Authors: Florentia Afentaki, Gurol Saglam, Argyris Kokkinis, Kostas Siozios, Georgios Zervakis, Mehdi B Tahoori,
- Abstract summary: Printed Electronics (PE) offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing costs, and on-demand fabrication.
PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits.
We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers.
- Score: 0.8274768545559366
- License:
- Abstract: Printed Electronics (PE) feature distinct and remarkable characteristics that make them a prominent technology for achieving true ubiquitous computing. This is particularly relevant in application domains that require conformal and ultra-low cost solutions, which have experienced limited penetration of computing until now. Unlike silicon-based technologies, PE offer unparalleled features such as non-recurring engineering costs, ultra-low manufacturing cost, and on-demand fabrication of conformal, flexible, non-toxic, and stretchable hardware. However, PE face certain limitations due to their large feature sizes, that impede the realization of complex circuits, such as machine learning classifiers. In this work, we address these limitations by leveraging the principles of Approximate Computing and Bespoke (fully-customized) design. We propose an automated framework for designing ultra-low power Multilayer Perceptron (MLP) classifiers which employs, for the first time, a holistic approach to approximate all functions of the MLP's neurons: multiplication, accumulation, and activation. Through comprehensive evaluation across various MLPs of varying size, our framework demonstrates the ability to enable battery-powered operation of even the most intricate MLP architecture examined, significantly surpassing the current state of the art.
Related papers
- Leveraging Pre-Trained Neural Networks to Enhance Machine Learning with Variational Quantum Circuits [48.33631905972908]
We introduce an innovative approach that utilizes pre-trained neural networks to enhance Variational Quantum Circuits (VQC)
This technique effectively separates approximation error from qubit count and removes the need for restrictive conditions.
Our results extend to applications such as human genome analysis, demonstrating the broad applicability of our approach.
arXiv Detail & Related papers (2024-11-13T12:03:39Z) - Embedding Hardware Approximations in Discrete Genetic-based Training for Printed MLPs [1.4694098707981968]
Printed Electronics (PE) enables stretchable, conformal,and non-toxic hardware.
PE are constrained by larger feature sizes, making it challenging to implement complex circuits such as machine learning (ML)aware circuits.
In this paper, we maximize the benefits of approximate computing by integrating hardware approximation into the training process.
arXiv Detail & Related papers (2024-02-05T11:52:23Z) - Quantum Computing Enhanced Service Ecosystem for Simulation in Manufacturing [56.61654656648898]
We propose a framework for a quantum computing-enhanced service ecosystem for simulation in manufacturing.
We analyse two high-value use cases with the aim of a quantitative evaluation of these new computing paradigms for industrially-relevant settings.
arXiv Detail & Related papers (2024-01-19T11:04:14Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Model-to-Circuit Cross-Approximation For Printed Machine Learning
Classifiers [4.865819809855699]
Printed electronics (PE) promises on-demand fabrication, low non-recurring engineering costs, and sub-cent fabrication costs.
Large feature sizes in PE prohibit the realization of complex ML models in PE, even with bespoke architectures.
We present an automated, cross-layer approximation framework tailored to bespoke architectures that enable complex ML models in PE.
arXiv Detail & Related papers (2023-03-14T22:11:34Z) - Co-Design of Approximate Multilayer Perceptron for Ultra-Resource
Constrained Printed Circuits [4.865819809855699]
Large feature sizes in Printed Electronics (PE) prohibit the realization of complex printed machine learning circuits.
We present, for the first time, an automated printed-aware software/hardware co-design framework that exploits approximate computing principles to enable ultra-resource constrained printed multilayer perceptrons (MLPs)
Our evaluation demonstrates that, compared to the state-of-the-art baseline, our circuits feature on average 6x (5.7x) lower area (power) and less than 1% accuracy loss.
arXiv Detail & Related papers (2023-02-28T13:55:19Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Design Automation for Fast, Lightweight, and Effective Deep Learning
Models: A Survey [53.258091735278875]
This survey covers studies of design automation techniques for deep learning models targeting edge computing.
It offers an overview and comparison of key metrics that are used commonly to quantify the proficiency of models in terms of effectiveness, lightness, and computational costs.
The survey proceeds to cover three categories of the state-of-the-art of deep model design automation techniques.
arXiv Detail & Related papers (2022-08-22T12:12:43Z) - Approximate Decision Trees For Machine Learning Classification on Tiny
Printed Circuits [0.7349727826230862]
Printed Electronics (PE) cannot compete with silicon-based systems in conventional evaluation metrics.
PE offers attractive properties such as on-demand ultra-low-cost fabrication, flexibility and non-toxicity.
Despite the attractive characteristics of PE, the large feature sizes in PE prohibit the realization of complex printed circuits.
arXiv Detail & Related papers (2022-03-15T15:47:59Z) - Cross-Layer Approximation For Printed Machine Learning Circuits [4.865819809855699]
We propose and implement a cross-layer approximation, tailored for bespoke machine learning (ML) architectures in printed electronics (PE)
Our results demonstrate that our cross approximation delivers optimal designs that, compared to the state-of-the-art exact designs, feature 47% and 44% average area and power reduction, respectively, and less than 1% accuracy loss.
arXiv Detail & Related papers (2022-03-11T13:41:15Z) - Multi-Agent Reinforcement Learning with Temporal Logic Specifications [65.79056365594654]
We study the problem of learning to satisfy temporal logic specifications with a group of agents in an unknown environment.
We develop the first multi-agent reinforcement learning technique for temporal logic specifications.
We provide correctness and convergence guarantees for our main algorithm.
arXiv Detail & Related papers (2021-02-01T01:13:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.