Context-Dependent Anomaly Detection with Knowledge Graph Embedding
Models
- URL: http://arxiv.org/abs/2203.09354v2
- Date: Sat, 19 Mar 2022 05:47:00 GMT
- Title: Context-Dependent Anomaly Detection with Knowledge Graph Embedding
Models
- Authors: Nathan Vaska, Kevin Leahy, and Victoria Helus
- Abstract summary: We develop a framework for converting a context-dependent anomaly detection problem to a link prediction problem.
We show that our method can detect context-dependent anomalies with a high degree of accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Increasing the semantic understanding and contextual awareness of machine
learning models is important for improving robustness and reducing
susceptibility to data shifts. In this work, we leverage contextual awareness
for the anomaly detection problem. Although graphed-based anomaly detection has
been widely studied, context-dependent anomaly detection is an open problem and
without much current research. We develop a general framework for converting a
context-dependent anomaly detection problem to a link prediction problem,
allowing well-established techniques from this domain to be applied. We
implement a system based on our framework that utilizes knowledge graph
embedding models and demonstrates the ability to detect outliers using context
provided by a semantic knowledge base. We show that our method can detect
context-dependent anomalies with a high degree of accuracy and show that
current object detectors can detect enough classes to provide the needed
context for good performance within our example domain.
Related papers
- Unsupervised Model Diagnosis [49.36194740479798]
This paper proposes Unsupervised Model Diagnosis (UMO) to produce semantic counterfactual explanations without any user guidance.
Our approach identifies and visualizes changes in semantics, and then matches these changes to attributes from wide-ranging text sources.
arXiv Detail & Related papers (2024-10-08T17:59:03Z) - Hypergraph Learning based Recommender System for Anomaly Detection, Control and Optimization [0.0]
We present a self-adapting anomaly detection framework for joint learning of (a) discrete hypergraph structure and (b) modeling the temporal trends and spatial relations among the interdependent sensors.
The framework exploits the relational inductive biases in the hypergraph-structured data to learn the pointwise single-step-ahead forecasts.
It derives the anomaly information propagation-based computational hypergraphs for root cause analysis and provides recommendations through an offline, optimal predictive control policy.
arXiv Detail & Related papers (2024-08-21T06:04:02Z) - A Comprehensive Library for Benchmarking Multi-class Visual Anomaly Detection [52.228708947607636]
This paper introduces a comprehensive visual anomaly detection benchmark, ADer, which is a modular framework for new methods.
The benchmark includes multiple datasets from industrial and medical domains, implementing fifteen state-of-the-art methods and nine comprehensive metrics.
We objectively reveal the strengths and weaknesses of different methods and provide insights into the challenges and future directions of multi-class visual anomaly detection.
arXiv Detail & Related papers (2024-06-05T13:40:07Z) - Anomaly Detection by Context Contrasting [57.695202846009714]
Anomaly detection focuses on identifying samples that deviate from the norm.
Recent advances in self-supervised learning have shown great promise in this regard.
We propose Con$$, which learns through context augmentations.
arXiv Detail & Related papers (2024-05-29T07:59:06Z) - Collaborative Knowledge Infusion for Low-resource Stance Detection [83.88515573352795]
Target-related knowledge is often needed to assist stance detection models.
We propose a collaborative knowledge infusion approach for low-resource stance detection tasks.
arXiv Detail & Related papers (2024-03-28T08:32:14Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Self-Calibrating Anomaly and Change Detection for Autonomous Inspection
Robots [0.07366405857677225]
A visual anomaly or change detection algorithm identifies regions of an image that differ from a reference image or dataset.
We propose a comprehensive deep learning framework for detecting anomalies and changes in a priori unknown environments.
arXiv Detail & Related papers (2022-08-26T09:52:12Z) - Generative and Contrastive Self-Supervised Learning for Graph Anomaly
Detection [14.631674952942207]
We propose a novel method, Self-Supervised Learning for Graph Anomaly Detection (SL-GAD)
Our method constructs different contextual subgraphs based on a target node and employs two modules, generative attribute regression and multi-view contrastive learning for anomaly detection.
We conduct extensive experiments on six benchmark datasets and the results demonstrate that our method outperforms state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-08-23T02:15:21Z) - Graph Neural Network-Based Anomaly Detection in Multivariate Time Series [17.414474298706416]
We develop a new way to detect anomalies in high-dimensional time series data.
Our approach combines a structure learning approach with graph neural networks.
We show that our method detects anomalies more accurately than baseline approaches.
arXiv Detail & Related papers (2021-06-13T09:07:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - A Transfer Learning Framework for Anomaly Detection Using Model of
Normality [2.9685635948299995]
Convolutional Neural Network (CNN) techniques have proven to be very useful in image-based anomaly detection applications.
We introduce a transfer learning framework for anomaly detection based on similarity measure with a Model of Normality (MoN)
We show that with the proposed threshold settings, a significant performance improvement can be achieved.
arXiv Detail & Related papers (2020-11-12T05:26:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.