Automated Materials Spectroscopy Analysis using Genetic Algorithms
- URL: http://arxiv.org/abs/2203.10152v1
- Date: Fri, 18 Mar 2022 20:36:31 GMT
- Title: Automated Materials Spectroscopy Analysis using Genetic Algorithms
- Authors: Miu Lun Lau, Min Long, Jeff Terry
- Abstract summary: Genetic Algorithm (GA) based, open-source project to solve multi-objective optimization problems of materials characterization data analysis.
modular design and multiple crossover and mutation options make the software for additional materials characterization applications too.
- Score: 12.447537764798795
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a Genetic Algorithm (GA) based, open-source project to solve
multi-objective optimization problems of materials characterization data
analysis including EXAFS, XPS and nanoindentation. The modular design and
multiple crossover and mutation options make the software extensible for
additional materials characterization applications too. This automation of the
analysis is crucial in the era when instrumentation acquires data orders of
magnitude more rapidly than it can be analyzed by hand. Our results
demonstrated good fitness scores with minimal human intervention.
Related papers
- Knowledge-Driven Feature Selection and Engineering for Genotype Data with Large Language Models [35.084222907099644]
We develop FREEFORM, Free-flow Reasoning and Ensembling for Enhanced Feature Output and Robust Modeling.
FreeFORM is available as open-source framework at GitHub: https://github.com/PennShenLab/FREEFORM.
arXiv Detail & Related papers (2024-10-02T17:53:08Z) - GenoTEX: A Benchmark for Evaluating LLM-Based Exploration of Gene Expression Data in Alignment with Bioinformaticians [13.837406082703756]
We introduce GenoTEX, a benchmark dataset for the automatic exploration of gene expression data.
GenoTEX provides annotated code and results for solving a wide range of gene identification problems.
We present GenoAgents, a team of LLM-based agents designed with context-aware planning, iterative correction, and domain expert consultation.
arXiv Detail & Related papers (2024-06-21T17:55:24Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
We introduce an end-to-end AI agent framework capable of high-fidelity extraction from extensive chemical literature.
Our framework's efficacy is evaluated using accuracy, recall, and F1 score of reaction condition data.
arXiv Detail & Related papers (2024-02-20T13:21:46Z) - Can Large Language Models Serve as Data Analysts? A Multi-Agent Assisted
Approach for Qualitative Data Analysis [6.592797748561459]
Large Language Models (LLMs) have enabled collaborative human-bot interactions in Software Engineering (SE)
We introduce a new dimension of scalability and accuracy in qualitative research, potentially transforming data interpretation methodologies in SE.
arXiv Detail & Related papers (2024-02-02T13:10:46Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
The ability to precisely predict protein thermostability is pivotal for various subfields and applications in biochemistry.
We introduce an ESM-assisted efficient approach that integrates protein sequence and structural features to predict the thermostability changes in protein upon single-point mutations.
arXiv Detail & Related papers (2023-12-07T03:25:49Z) - A New Deep Learning and XAI-Based Algorithm for Features Selection in
Genomics [5.787117733071415]
The paper proposes a novel algorithm to perform Feature Selection on genomic-scale data.
Results of the application on a Chronic Lymphocytic Leukemia dataset evidence the effectiveness of the algorithm.
arXiv Detail & Related papers (2023-03-29T16:44:13Z) - Sensitivity analysis in differentially private machine learning using
hybrid automatic differentiation [54.88777449903538]
We introduce a novel textithybrid automatic differentiation (AD) system for sensitivity analysis.
This enables modelling the sensitivity of arbitrary differentiable function compositions, such as the training of neural networks on private data.
Our approach can enable the principled reasoning about privacy loss in the setting of data processing.
arXiv Detail & Related papers (2021-07-09T07:19:23Z) - Quantum Algorithms for Data Representation and Analysis [68.754953879193]
We provide quantum procedures that speed-up the solution of eigenproblems for data representation in machine learning.
The power and practical use of these subroutines is shown through new quantum algorithms, sublinear in the input matrix's size, for principal component analysis, correspondence analysis, and latent semantic analysis.
Results show that the run-time parameters that do not depend on the input's size are reasonable and that the error on the computed model is small, allowing for competitive classification performances.
arXiv Detail & Related papers (2021-04-19T00:41:43Z) - A probabilistic deep learning approach to automate the interpretation of
multi-phase diffraction spectra [4.240899165468488]
We develop an ensemble convolutional neural network trained on simulated diffraction spectra to identify complex multi-phase mixtures.
Our model is benchmarked on simulated and experimentally measured diffraction spectra, showing exceptional performance with accuracies exceeding those given by previously reported methods.
arXiv Detail & Related papers (2021-03-30T20:13:01Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.