論文の概要: Model-based Multi-agent Reinforcement Learning: Recent Progress and
Prospects
- arxiv url: http://arxiv.org/abs/2203.10603v1
- Date: Sun, 20 Mar 2022 17:24:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-23 08:44:58.084889
- Title: Model-based Multi-agent Reinforcement Learning: Recent Progress and
Prospects
- Title(参考訳): モデルに基づくマルチエージェント強化学習の現状と展望
- Authors: Xihuai Wang, Zhicheng Zhang, Weinan Zhang
- Abstract要約: マルチエージェント強化学習(MARL)は、複数の参加者が関与するシーケンシャルな意思決定問題に取り組む。
MARLは効果的なトレーニングのために膨大な数のサンプルを必要とする。
モデルに基づく手法は、サンプル効率の証明可能な利点を実現することが示されている。
- 参考スコア(独自算出の注目度): 23.347535672670688
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Significant advances have recently been achieved in Multi-Agent Reinforcement
Learning (MARL) which tackles sequential decision-making problems involving
multiple participants. However, MARL requires a tremendous number of samples
for effective training. On the other hand, model-based methods have been shown
to achieve provable advantages of sample efficiency. However, the attempts of
model-based methods to MARL have just started very recently. This paper
presents a review of the existing research on model-based MARL, including
theoretical analyses, algorithms, and applications, and analyzes the advantages
and potential of model-based MARL. Specifically, we provide a detailed taxonomy
of the algorithms and point out the pros and cons for each algorithm according
to the challenges inherent to multi-agent scenarios. We also outline promising
directions for future development of this field.
- Abstract(参考訳): マルチエージェント強化学習(MARL: Multi-Agent Reinforcement Learning)は、複数の参加者が関与する逐次的な意思決定問題に対処する。
しかし、MARLは効果的なトレーニングのために膨大な数のサンプルを必要とする。
一方, モデルに基づく手法では, サンプル効率の有望な利点が得られることが示されている。
しかし、MARLに対するモデルベース手法の試みはごく最近始まったばかりである。
本稿では,モデルベースMARLの理論的解析,アルゴリズム,応用を含む既存研究のレビューを行い,モデルベースMARLの利点と可能性について分析する。
具体的には、アルゴリズムの詳細な分類を提供し、マルチエージェントシナリオに固有の課題に応じて各アルゴリズムの長所と短所を指摘する。
我々はまた、この分野の今後の発展に向けた有望な方向性を概説する。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - A Survey on Multimodal Benchmarks: In the Era of Large AI Models [13.299775710527962]
MLLM(Multimodal Large Language Models)は、人工知能に大きな進歩をもたらした。
この調査は、4つのコアドメイン(理解、推論、生成、アプリケーション)にわたるMLLMを評価する211のベンチマークを体系的にレビューする。
論文 参考訳(メタデータ) (2024-09-21T15:22:26Z) - Model-Free Active Exploration in Reinforcement Learning [53.786439742572995]
強化学習における探索問題について検討し,新しいモデルフリーソリューションを提案する。
我々の戦略は、最先端の探査アプローチよりも高速に効率的な政策を特定できる。
論文 参考訳(メタデータ) (2024-06-30T19:00:49Z) - Representation Learning For Efficient Deep Multi-Agent Reinforcement Learning [10.186029242664931]
我々は,MARL訓練を補完するために考案された総合表現学習の形式を適用したMAPO-LSOを提案する。
特に、MAPO-LSOは遷移力学再構成と自己予測学習のマルチエージェント拡張を提案する。
実験の結果,MAPO-LSOはバニラMARLと比較して,サンプル効率と学習性能の顕著な向上を示した。
論文 参考訳(メタデータ) (2024-06-05T03:11:44Z) - Efficient Multi-agent Reinforcement Learning by Planning [33.51282615335009]
マルチエージェント強化学習(MARL)アルゴリズムは、大規模意思決定タスクの解決において、目覚ましいブレークスルーを達成している。
既存のMARLアルゴリズムの多くはモデルフリーであり、サンプル効率を制限し、より困難なシナリオでの適用を妨げている。
政策探索のための集中型モデルとモンテカルロ木探索(MCTS)を組み合わせたMAZeroアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-20T04:36:02Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
本稿では,既存のMLLMのモデル構成による新しいパラダイムを提案する。
我々の基本的な実装であるNaiveMCは、モダリティエンコーダを再利用し、LLMパラメータをマージすることで、このパラダイムの有効性を実証する。
論文 参考訳(メタデータ) (2024-02-20T06:38:10Z) - Let's reward step by step: Step-Level reward model as the Navigators for
Reasoning [64.27898739929734]
Process-Supervised Reward Model (PRM)は、トレーニングフェーズ中にステップバイステップのフィードバックをLLMに提供する。
LLMの探索経路を最適化するために,PRMからのステップレベルのフィードバックを応用した欲求探索アルゴリズムを提案する。
提案手法の汎用性を探るため,コーディングタスクのステップレベル報酬データセットを自動生成する手法を開発し,コード生成タスクにおける同様の性能向上を観察する。
論文 参考訳(メタデータ) (2023-10-16T05:21:50Z) - ESP: Exploiting Symmetry Prior for Multi-Agent Reinforcement Learning [22.733348449818838]
マルチエージェント強化学習(MARL)は近年,有望な成果を上げている。
本稿では、データ拡張とよく設計された一貫性損失を統合することで、事前知識を活用するためのフレームワークを提案する。
論文 参考訳(メタデータ) (2023-07-30T09:49:05Z) - MinT: Boosting Generalization in Mathematical Reasoning via Multi-View
Fine-Tuning [53.90744622542961]
数学領域における推論は、小言語モデル(LM)にとって重要な課題である。
多様なアノテーションスタイルで既存の数学的問題データセットを利用する新しい手法を提案する。
実験結果から,LLaMA-7Bモデルが先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2023-07-16T05:41:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。