論文の概要: Information loss and run time from practical application of quantum data
compression
- arxiv url: http://arxiv.org/abs/2203.11332v1
- Date: Mon, 21 Mar 2022 20:46:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-21 04:48:44.550601
- Title: Information loss and run time from practical application of quantum data
compression
- Title(参考訳): 量子データ圧縮の実用化による情報損失と実行時間
- Authors: Saahil Patel, Benjamin Collis, William Duong, Daniel Koch,
Massimiliano Cutugno, Laura Wessing, Paul Alsing
- Abstract要約: 本稿では,ハイブリッド量子オートエンコーダアルゴリズムの量子および古典的成分について述べる。
ビットマップ画像を量子重ね合わせ状態としてエンコードし、離散値の密度行列を持つ線形独立ベクトルに対応する。
シミュレーションを用いて、このデータをほぼロスレス圧縮で圧縮し、IBMQ量子チップ上でアルゴリズムを実行する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We examine information loss, resource costs, and run time from practical
application of quantum data compression. Compressing quantum data to fewer
qubits enables efficient use of resources, as well as applications for quantum
communication and denoising. In this context, we provide a description of the
quantum and classical components of the hybrid quantum autoencoder algorithm,
implemented using IBM's Qiskit language. Utilizing our own data sets, we encode
bitmap images as quantum superposition states, which correspond to linearly
independent vectors with density matrices of discrete values. We successfully
compress this data with near-lossless compression using simulation, and then
run our algorithm on an IBMQ quantum chip. We describe conditions and run times
for compressing our data on quantum devices.
- Abstract(参考訳): 量子データ圧縮の実用的応用から,情報損失,資源コスト,実行時間について検討する。
量子データをより少ない量子ビットに圧縮することで、リソースの効率的な利用が可能になる。
この文脈では、IBMのQiskit言語を用いて実装されたハイブリッド量子オートエンコーダアルゴリズムの量子および古典的コンポーネントについて記述する。
我々のデータセットを利用してビットマップ画像を量子重ね合わせ状態としてエンコードし、離散値の密度行列を持つ線形独立ベクトルに対応する。
シミュレーションを用いて、このデータをほぼロスレス圧縮で圧縮し、IBMQ量子チップ上でアルゴリズムを実行する。
量子デバイス上でデータを圧縮するための条件と実行時間を記述する。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
グレー値画像のひび割れ検出に量子転送学習を適用した。
我々は、PennyLaneの標準量子ビットのパフォーマンスとトレーニング時間を、IBMのqasm_simulatorや実際のバックエンドと比較する。
論文 参考訳(メタデータ) (2023-07-31T14:45:29Z) - Quantum Circuit AutoEncoder [17.81888531978833]
本稿では、量子回路内の情報を圧縮してエンコードする量子回路オートエンコーダ(QCAE)のモデルを提案する。
varQCAEを3つの実用的なタスクに適用し、量子回路内の情報を効果的に圧縮できることを示す。
論文 参考訳(メタデータ) (2023-07-17T12:41:28Z) - Quantum-parallel vectorized data encodings and computations on
trapped-ions and transmons QPUs [0.3262230127283452]
我々は、QCrankとQBArtという2つの新しいデータ符号化方式を導入する。
QCrankは実数値データのシーケンスをデータキュービットの回転としてエンコードし、高いストレージ密度を実現する。
QBArtはデータのバイナリ表現を計算ベースに埋め込み、量子測定を少なくする。
論文 参考訳(メタデータ) (2023-01-19T01:26:32Z) - Iterative Qubits Management for Quantum Index Searching in a Hybrid
System [56.39703478198019]
IQuCSは、量子古典ハイブリッドシステムにおけるインデックス検索とカウントを目的としている。
我々はQiskitでIQuCSを実装し、集中的な実験を行う。
その結果、量子ビットの消費を最大66.2%削減できることが示されている。
論文 参考訳(メタデータ) (2022-09-22T21:54:28Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
本稿では,分散量子コンピューティング(DQC)のためのリソース割り当て方式を提案する。
本評価は,提案手法の有効性と,量子コンピュータとオンデマンド量子コンピュータの両立性を示すものである。
論文 参考訳(メタデータ) (2022-09-16T02:37:32Z) - Compilation of algorithm-specific graph states for quantum circuits [55.90903601048249]
本稿では,高レベル言語で記述された量子回路から,アルゴリズム固有のグラフ状態を作成する量子回路コンパイラを提案する。
この計算は、このグラフ状態に関する一連の非パウリ測度を用いて実装することができる。
論文 参考訳(メタデータ) (2022-09-15T14:52:31Z) - Quantum compression with classically simulatable circuits [0.5735035463793007]
本稿では,量子情報を低次元表現に変換する進化的アルゴリズムを用いて,量子オートエンコーダを設計する戦略を提案する。
量子状態の異なる族を圧縮するアルゴリズムの初期応用を実証した。
このアプローチは、計算資源の少ない量子データの低表現を見つけるために古典論理を用いる可能性を開く。
論文 参考訳(メタデータ) (2022-07-06T20:36:10Z) - Data compression for quantum machine learning [2.119778346188635]
量子コンピュータで使用する古典的データを効率よく圧縮・ロードする問題に対処する。
提案手法により,必要量子ビット数と量子回路の深さを調整できる。
論文 参考訳(メタデータ) (2022-04-24T03:03:14Z) - Large-scale quantum machine learning [0.0]
ランダム化計測を用いて量子カーネルを計測し、2次高速化を行い、大規模データセットを高速に処理する。
我々は高次元データを回路深度と線形にスケーリングする特徴数で量子コンピュータに効率的にエンコードする。
現在利用可能な量子コンピュータを使用して、MNISTデータベースは10年ではなく220時間以内に処理できる。
論文 参考訳(メタデータ) (2021-08-02T17:00:18Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。