論文の概要: Locally Adaptive Algorithms for Multiple Testing with Network Structure,
with Application to Genome-Wide Association Studies
- arxiv url: http://arxiv.org/abs/2203.11461v4
- Date: Wed, 16 Aug 2023 22:54:54 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 01:35:56.456960
- Title: Locally Adaptive Algorithms for Multiple Testing with Network Structure,
with Application to Genome-Wide Association Studies
- Title(参考訳): ネットワーク構造を用いた複数検定のための局所適応アルゴリズムとゲノムワイドアソシエーション研究への応用
- Authors: Ziyi Liang, T. Tony Cai, Wenguang Sun, Yin Xia
- Abstract要約: 本稿では、ネットワークデータや関連するソースドメインからの補助データの複数サンプルを組み込むための、原則的で汎用的なフレームワークを提案する。
LASLAは、データ駆動重み付けを個々のテストポイントに割り当てるために構造的洞察を活用する、$p$値重み付けアプローチを採用している。
LASLAは様々な合成実験を通じて説明され、T2D関連SNP同定への応用がある。
- 参考スコア(独自算出の注目度): 4.851566905442038
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Linkage analysis has provided valuable insights to the GWAS studies,
particularly in revealing that SNPs in linkage disequilibrium (LD) can jointly
influence disease phenotypes. However, the potential of LD network data has
often been overlooked or underutilized in the literature. In this paper, we
propose a locally adaptive structure learning algorithm (LASLA) that provides a
principled and generic framework for incorporating network data or multiple
samples of auxiliary data from related source domains; possibly in different
dimensions/structures and from diverse populations. LASLA employs a $p$-value
weighting approach, utilizing structural insights to assign data-driven weights
to individual test points. Theoretical analysis shows that LASLA can
asymptotically control FDR with independent or weakly dependent primary
statistics, and achieve higher power when the network data is informative.
Efficiency again of LASLA is illustrated through various synthetic experiments
and an application to T2D-associated SNP identification.
- Abstract(参考訳): リンケージ分析はGWAS研究に重要な洞察を与え、特にリンケージ不均衡(LD)におけるSNPが疾患の表現型に共同で影響を及ぼすことを明らかにした。
しかし、LDネットワークデータの可能性はしばしば文献で見過ごされ、利用されていない。
本稿では,ネットワークデータや関連源領域からの補助データの複数サンプル(多種多様な次元・構造、多種多様な集団)を組み込むための原則的かつ汎用的な枠組みを提供する,局所適応構造学習アルゴリズム(lasla)を提案する。
LASLAは、データ駆動重み付けを個々のテストポイントに割り当てるために構造的洞察を活用する、$p$値重み付けアプローチを採用している。
理論的解析により、LASLAは独立あるいは弱依存の一次統計量で漸近的にFDRを制御でき、ネットワークデータが情報化されているときに高いパワーを得ることができることが示された。
LASLAの効率性は、様々な合成実験とT2D関連SNP識別への応用を通して説明される。
関連論文リスト
- Meta-Statistical Learning: Supervised Learning of Statistical Inference [59.463430294611626]
この研究は、大きな言語モデル(LLM)の成功を駆動するツールと原則が、分散レベルのタスクに取り組むために再利用可能であることを実証している。
本稿では,統計的推論タスクを教師付き学習問題として再構成するマルチインスタンス学習に触発されたメタ統計学習を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:04:39Z) - An Information Criterion for Controlled Disentanglement of Multimodal Data [39.601584166020274]
マルチモーダル表現学習は、複数のモーダルに固有の情報を関連付けて分解しようとする。
Disentangled Self-Supervised Learning (DisentangledSSL)は、非角表現を学習するための新しい自己教師型アプローチである。
論文 参考訳(メタデータ) (2024-10-31T14:57:31Z) - Multimodal Structure Preservation Learning [13.868320911807587]
データ表現を学習する新しい方法として,マルチモーダル構造保存学習(MSPL)を提案する。
合成時系列データ中の潜伏構造を解明し,全ゲノムシークエンシングおよび抗菌抵抗性データからクラスターを回収するためのMSPLの有効性を実証した。
論文 参考訳(メタデータ) (2024-10-29T20:21:40Z) - Simple Ingredients for Offline Reinforcement Learning [86.1988266277766]
オフライン強化学習アルゴリズムは、ターゲット下流タスクに高度に接続されたデータセットに有効であることが証明された。
既存の手法が多様なデータと競合することを示す。その性能は、関連するデータ収集によって著しく悪化するが、オフラインバッファに異なるタスクを追加するだけでよい。
アルゴリズム的な考慮以上のスケールが、パフォーマンスに影響を及ぼす重要な要因であることを示す。
論文 参考訳(メタデータ) (2024-03-19T18:57:53Z) - A Structural-Clustering Based Active Learning for Graph Neural Networks [16.85038790429607]
グラフ構造化データに特化して設計された能動学習(SPA)の改善のための構造クラスタリングページランク法を提案する。
SPAは,SCANアルゴリズムを用いたコミュニティ検出とPageRankスコアリング手法を統合し,効率的かつ有益なサンプル選択を行う。
論文 参考訳(メタデータ) (2023-12-07T14:04:38Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
本稿では,トランスファーラーニングとマルチタスクラーニングの原則に基づく正規化アプローチである同時学習を紹介する。
我々は、ターゲットデータセットであるUFOP-HVDの補助データセットを活用し、カスタマイズされた損失関数でガイドされた同時分類を容易にする。
興味深いことに,本手法は正規化のないモデルよりも優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-22T19:44:57Z) - Domain Adaptation Principal Component Analysis: base linear method for
learning with out-of-distribution data [55.41644538483948]
ドメイン適応は現代の機械学習において一般的なパラダイムである。
ドメイン適応主成分分析(DAPCA)という手法を提案する。
DAPCAは、領域適応タスクの解決に有用な線形化データ表現を見つける。
論文 参考訳(メタデータ) (2022-08-28T21:10:56Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Relation-Guided Representation Learning [53.60351496449232]
本稿では,サンプル関係を明示的にモデル化し,活用する表現学習手法を提案する。
私たちのフレームワークは、サンプル間の関係をよく保存します。
サンプルをサブスペースに埋め込むことにより,本手法が大規模なサンプル外問題に対処可能であることを示す。
論文 参考訳(メタデータ) (2020-07-11T10:57:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。