論文の概要: Plasticity Neural Network Based on Astrocytic Influence at Critical
Periods, Synaptic Competition and Compensation by Current and Mnemonic Brain
Plasticity and Synapse Formation
- arxiv url: http://arxiv.org/abs/2203.11740v1
- Date: Sat, 19 Mar 2022 14:38:54 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-26 17:41:49.243560
- Title: Plasticity Neural Network Based on Astrocytic Influence at Critical
Periods, Synaptic Competition and Compensation by Current and Mnemonic Brain
Plasticity and Synapse Formation
- Title(参考訳): 臨界時の天文学的影響に基づく塑性ニューラルネットワーク, シナプス競争と電流およびMnの脳塑性による補償とシナプス形成
- Authors: Jun-Bo Tao, Bai-Qing Sun, Wei-Dong Zhu, Shi-You Qu, Ling-Kun Chen,
Jia-Qiang Li, Chong Wu, Yu Xiong, Jiaxuan Zhou
- Abstract要約: RNNのフレームに基づいて,PNNのモデル構築,公式導出,アルゴリズムテストを行った。
提案した課題は、モデル構築、公式導出、アルゴリズムテストによって、神経科学と脳認知の促進が達成されたかどうかである。
- 参考スコア(独自算出の注目度): 7.8787868286474
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Based on the RNN frame, we accomplished the model construction, formula
derivation and algorithm testing for PNN. We elucidated the mechanism of PNN
based on the latest MIT research on synaptic compensation, and also grounded
our study on the basis of findings of the Stanford research, which suggested
that synapse formation is important for competition in dendrite morphogenesis.
The influence of astrocytic impacts on brain plasticity and synapse formation
is an important mechanism of our Neural Network at critical periods or the end
of critical periods.In the model for critical periods, the hypothesis is that
the best brain plasticity so far affects current brain plasticity and the best
synapse formation so far affects current synapse formation.Furthermore, PNN
takes into account the mnemonic gradient informational synapse formation, and
brain plasticity and synapse formation change frame of NN is a new method of
Deep Learning.The question we proposed is whether the promotion of neuroscience
and brain cognition was achieved by model construction, formula derivation or
algorithm testing. We resorted to the Artificial Neural Network (ANN),
evolutionary computation and other numerical methods for hypotheses, possible
explanations and rules, rather than only biological tests which include
cutting-edge imaging and genetic tools.And it has no ethics of animal testing.
- Abstract(参考訳): RNNのフレームに基づいて,PNNのモデル構築,公式導出,アルゴリズムテストを行った。
我々は,最新のMITによるシナプス補償研究に基づいて,PNNのメカニズムを解明し,スタンフォード大学の研究成果に基づいて,シナプス形成が樹状突起形態形成の競争において重要であることを示唆した。
The influence of astrocytic impacts on brain plasticity and synapse formation is an important mechanism of our Neural Network at critical periods or the end of critical periods.In the model for critical periods, the hypothesis is that the best brain plasticity so far affects current brain plasticity and the best synapse formation so far affects current synapse formation.Furthermore, PNN takes into account the mnemonic gradient informational synapse formation, and brain plasticity and synapse formation change frame of NN is a new method of Deep Learning.The question we proposed is whether the promotion of neuroscience and brain cognition was achieved by model construction, formula derivation or algorithm testing.
我々は、最先端の画像や遺伝ツールを含む生物学的テストだけでなく、ニューラルネットワーク(ANN)、進化的計算、仮説、可能な説明や規則などの数値的な手法を活用しました。
関連論文リスト
- Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Neural Dynamics Model of Visual Decision-Making: Learning from Human Experts [28.340344705437758]
視覚入力から行動出力まで,包括的な視覚的意思決定モデルを実装した。
我々のモデルは人間の行動と密接に一致し、霊長類の神経活動を反映する。
ニューロイメージング・インフォームド・ファインチューニング手法を導入し、モデルに適用し、性能改善を実現した。
論文 参考訳(メタデータ) (2024-09-04T02:38:52Z) - Contribute to balance, wire in accordance: Emergence of backpropagation from a simple, bio-plausible neuroplasticity rule [0.0]
我々は,脳にBPを実装するための潜在的なメカニズムを提供する新しい神経可塑性規則を導入する。
我々は,我々の学習規則が階層型ニューラルネットワークのBPを近似なしで正確に再現できることを数学的に証明した。
論文 参考訳(メタデータ) (2024-05-23T03:28:52Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Learning with Chemical versus Electrical Synapses -- Does it Make a
Difference? [61.85704286298537]
バイオインスパイアされたニューラルネットワークは、ニューラルネットワークの理解を深め、AIシステムの最先端を改善する可能性がある。
我々は,光リアルな自律走行シミュレータを用いて自律車線維持実験を行い,その性能を種々の条件下で評価する。
論文 参考訳(メタデータ) (2023-11-21T13:07:20Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Control of synaptic plasticity in neural networks [0.0]
脳は非線形で高頻度のリカレントニューラルネットワーク(RNN)である
提案するフレームワークは,エラーフィードバックループシステムをシミュレートする新しいNNベースのアクタ批判手法を含む。
論文 参考訳(メタデータ) (2023-03-10T13:36:31Z) - Modeling Associative Plasticity between Synapses to Enhance Learning of
Spiking Neural Networks [4.736525128377909]
Spiking Neural Networks(SNN)は、ニューラルネットワークの第3世代であり、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする。
本稿では,シナプス間の結合可塑性をモデル化し,頑健で効果的な学習機構を提案する。
本手法は静的および最先端のニューロモルフィックデータセット上での優れた性能を実現する。
論文 参考訳(メタデータ) (2022-07-24T06:12:23Z) - Neural Language Models are not Born Equal to Fit Brain Data, but
Training Helps [75.84770193489639]
音声ブックを聴く被験者の機能的磁気共鳴イメージングの時間軸予測に及ぼすテスト損失,トレーニングコーパス,モデルアーキテクチャの影響について検討した。
各モデルの訓練されていないバージョンは、同じ単語をまたいだ脳反応の類似性を捉えることで、脳内のかなりの量のシグナルをすでに説明していることがわかりました。
ニューラル言語モデルを用いたヒューマン・ランゲージ・システムの説明を目的とした今後の研究の実践を提案する。
論文 参考訳(メタデータ) (2022-07-07T15:37:17Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
インテルの第5世代ニューロモルフィックチップ「Loihi」の可能性について検討する。
Loihiは、脳内のニューロンをエミュレートするスパイキングニューラルネットワーク(SNN)という新しいアイデアに基づいている。
Loihiは従来のシミュレーションを非常に効率的に再現し、ネットワークが大きくなるにつれて、時間とエネルギーの両方のパフォーマンスにおいて顕著にスケールする。
論文 参考訳(メタデータ) (2021-09-22T16:52:51Z) - SpikePropamine: Differentiable Plasticity in Spiking Neural Networks [0.0]
スパイキングニューラルネットワーク(SNN)におけるシナプス可塑性と神経調節シナプス可塑性のダイナミクスを学習するための枠組みを導入する。
異なる可塑性で強化されたSNNは、時間的学習課題の集合を解決するのに十分であることを示す。
これらのネットワークは、高次元のロボット学習タスクで移動を生成できることも示されている。
論文 参考訳(メタデータ) (2021-06-04T19:29:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。