論文の概要: Bubble Prediction of Non-Fungible Tokens (NFTs): An Empirical
Investigation
- arxiv url: http://arxiv.org/abs/2203.12587v2
- Date: Thu, 16 Jun 2022 04:37:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-19 15:49:20.582521
- Title: Bubble Prediction of Non-Fungible Tokens (NFTs): An Empirical
Investigation
- Title(参考訳): 非フランジブルトークン(nfts)の気泡予測 : 実験的検討
- Authors: Kensuke Ito, Kyohei Shibano, Gento Mogi
- Abstract要約: 2021年の強い市場成長にもかかわらず、バブル予測の観点からは、プロジェクトベースでのNFTは検討されていないため、この話題は重要である。
我々は,4つの主要なNFTプロジェクトに関連する時系列価格データに対して,対数周期電力法(LPPL)モデルを適用した。
その結果、2021年12月20日現在、(i)NFTは概して小バブル(価格下落が予想される)、(ii)Decentralandプロジェクトは中バブル(価格低下が予想される)、(iii)name ServiceおよびArtBlocksプロジェクトは中バブルにあることが示唆された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Our study empirically predicts the bubble of non-fungible tokens (NFTs):
transferable and unique digital assets on public blockchains. This topic is
important because, despite their strong market growth in 2021, NFTs on a
project basis have not been investigated in terms of bubble prediction.
Specifically, we applied the logarithmic periodic power law (LPPL) model to
time-series price data associated with four major NFT projects. The results
indicate that, as of December 20, 2021, (i) NFTs, in general, are in a small
bubble (a price decline is predicted), (ii) the Decentraland project is in a
medium bubble (a price decline is predicted), and (iii) the Ethereum Name
Service and ArtBlocks projects are in a small negative bubble (a price increase
is predicted). A future work will involve a prediction refinement considering
the heterogeneity of NFTs, comparison with other methods, and the use of more
enriched data.
- Abstract(参考訳): 我々の研究では、公開ブロックチェーン上の転送可能およびユニークなデジタル資産(NFT)のバブルを実証的に予測する。
2021年の市場成長にもかかわらず、バブル予測の観点からプロジェクトベースでのnftは調査されていないため、この話題は重要である。
具体的には、4つの主要なNTTプロジェクトに関連する時系列価格データにLPPLモデルを適用した。
その結果、2021年12月20日現在である。
(i)NFTは一般的に小さなバブルにある(価格下落が予測される)。
(ii)分散化プロジェクトは中規模バブルにあり(価格下落が予測される)、
(iii)ethereum name serviceとartblocksプロジェクトは小さなマイナスバブルにあります(価格の上昇が予測されます)。
今後の研究には、NFTの不均一性、他の手法との比較、よりリッチなデータの使用を考慮した予測改善が含まれる。
関連論文リスト
- Hawkes-based cryptocurrency forecasting via Limit Order Book data [1.6236898718152877]
本稿では,ホークスモデルに根ざしたリミットオーダーブック(LOB)データを用いた新しい予測アルゴリズムを提案する。
我々の手法は、将来の金融相互作用の予測を活用することで、返却サインの正確な予測を提供する。
提案手法の有効性は,50シナリオにわたるモンテカルロシミュレーションを用いて検証した。
論文 参考訳(メタデータ) (2023-12-21T16:31:07Z) - Deep Learning and NLP in Cryptocurrency Forecasting: Integrating Financial, Blockchain, and Social Media Data [3.6390165502400875]
本稿では,機械学習(ML)と自然言語処理(NLP)技術を活用した暗号通貨価格予測の新しい手法を提案する。
ニュースやソーシャルメディアのコンテンツを分析することで、仮想通貨市場に対する大衆の感情の影響を評価する。
論文 参考訳(メタデータ) (2023-11-23T16:14:44Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
本稿では,これらの投資商品を活用するために,ニューラルネットワークに基づく効果的なアルゴリズムを提案する。
シャープ比を最大化するために、各アセットの割り当て重量を時間間隔で出力するディープニューラルネットワークを訓練する。
ネットワークの特定の資産に対するバイアスを規制する新たな損失項を提案し,最小分散戦略に近い割り当て戦略をネットワークに学習させる。
論文 参考訳(メタデータ) (2023-10-02T12:33:28Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Show me your NFT and I tell you how it will perform: Multimodal
representation learning for NFT selling price prediction [2.578242050187029]
非Fungible Tokens(NFT)は、ブロックチェーン技術とスマートコントラクトに基づく、デジタルアートフォーム(アートワークやコレクションブルなど)上のユニークな暗号資産の所有権の行為を表す。
我々は,NFT画像とテキストのコレクション上に,グラフニューラルネットワークモデルとともにトランスフォーマーベースの言語と視覚モデルをトレーニングするために設計された,新しいマルチモーダルディープラーニングフレームワークであるMERLINを提案する。
MERLINの重要な側面は、NFTトレーディングに関心のあるユーザが処理したいプライマリデータのみを利用するため、金融機能に対する独立性である。
論文 参考訳(メタデータ) (2023-02-03T11:56:38Z) - Bubble or Not: Measurements, Analyses, and Findings on the Ethereum
ERC721 and ERC1155 Non-fungible Token Ecosystem [22.010657813215413]
NFTの時価総額は2021年に215億米ドルに達した。
2022年第2四半期のNFT市場の急激な下落は、NFT市場の目に見えるブームに疑問を呈している。
ブロックチェーン全体からデータを収集することにより、NFT生成グラフ、NFT転送グラフ、NFTホールドグラフという3つのグラフを構築し、NFTトレーダーを特徴付ける。
我々は,NFTの活性度と値の定量化のための新しい指標を提案し,インジケータとグラフ解析を組み合わせてバブルNFTを見つけるアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-05T10:17:57Z) - A Game of NFTs: Characterizing NFT Wash Trading in the Ethereum Blockchain [53.8917088220974]
非Fungible Token(NFT)市場は2021年に爆発的に成長し、2022年1月には月間貿易額が60億ドルに達した。
ウォッシュトレーディングの可能性に関する懸念が浮かび上がっており、あるパーティがNFTを取引してそのボリュームを人為的に膨らませる市場操作の形式である。
洗濯物取引は全NFTコレクションの5.66%に影響し、総生産量は3,406,110,774ドルである。
論文 参考訳(メタデータ) (2022-12-02T15:03:35Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Mapping the NFT revolution: market trends, trade networks and visual
features [0.25861007846258416]
Non Fungible Tokens (NFT) は、アート、コレクション、ゲーム内アイテムなどのオブジェクトを表すデジタル資産である。
我々は2017年6月23日から2021年4月27日までの470万NFTの6100万取引に関するデータを分析した。
論文 参考訳(メタデータ) (2021-06-01T17:25:32Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。