論文の概要: Microstructure Surface Reconstruction from SEM Images: An Alternative to
Digital Image Correlation (DIC)
- arxiv url: http://arxiv.org/abs/2203.13438v1
- Date: Fri, 25 Mar 2022 03:59:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-28 14:08:22.675535
- Title: Microstructure Surface Reconstruction from SEM Images: An Alternative to
Digital Image Correlation (DIC)
- Title(参考訳): SEM画像からの微細構造表面の再構成 : デジタル画像相関(DIC)の代替として
- Authors: Khalid El-Awady
- Abstract要約: 疲労試験およびき裂発生時の材料表面の3次元モデルを構築した。
これらの測定は物質ひずみテンソルにマッピングすることができ、物質寿命を理解し、失敗を予測するのに役立つ。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We reconstruct a 3D model of the surface of a material undergoing fatigue
testing and experiencing cracking. Specifically we reconstruct the surface
depth (out of plane intrusions and extrusions) and lateral (in-plane) motion
from multiple views of the sample at the end of the experiment, combined with a
reverse optical flow propagation backwards in time that utilizes interim single
view images. These measurements can be mapped to a material strain tensor which
helps to understand material life and predict failure. This approach offers an
alternative to the commonly used Digital Image Correlation (DIC) technique
which relies on tracking a speckle pattern applied to the material surface. DIC
only produces in-plane (2D) measurements whereas our approach is 3D and
non-invasive (requires no pattern being applied to the material).
- Abstract(参考訳): 疲労試験およびき裂発生時の材料表面の3次元モデルを構築した。
具体的には,実験の終了時に試料の複数ビューから表面深度(平面侵入と押出)と横方向(平面内)の動きを再構成し,その逆光流の伝播を時間軸に組み合わせ,中間的な単一ビュー画像を利用する。
これらの測定は物質ひずみテンソルにマッピングでき、物質の寿命を理解し、故障を予測するのに役立つ。
このアプローチは、材料表面に適用されるスペックルパターンの追跡に依存する、一般的に使用されるデジタル画像相関(dic)技術に代わるものを提供する。
DICは平面内(2D)測定しか生成しないが、我々のアプローチは3Dで非侵襲的である(材料にパターンを適用する必要はない)。
関連論文リスト
- NeRSP: Neural 3D Reconstruction for Reflective Objects with Sparse Polarized Images [62.752710734332894]
NeRSPはスパース偏光画像を用いた反射面のニューラル3次元再構成技術である。
偏光画像形成モデルと多視点方位整合性から測光的および幾何学的手がかりを導出する。
我々は6つのビューのみを入力として、最先端の表面再構成結果を達成する。
論文 参考訳(メタデータ) (2024-06-11T09:53:18Z) - 3D Imaging of Complex Specular Surfaces by Fusing Polarimetric and Deflectometric Information [5.729076985389067]
そこで本研究では,新しい手法を用いて,反射光場に含まれる情報を符号化し,復号化するための計測原理を提案する。
提案手法では,SfPの非現実的正像像像の仮定を除去し,それぞれの結果を大幅に改善する。
複素形状の鏡面上での単発・多発計測を実演し,本手法について紹介する。
論文 参考訳(メタデータ) (2024-06-04T06:24:07Z) - NeuSD: Surface Completion with Multi-View Text-to-Image Diffusion [56.98287481620215]
本稿では,対象物の一部のみを捉えた複数の画像から3次元表面再構成を行う手法を提案する。
提案手法は, 表面の可視部分の再構成に神経放射場を用いた表面再構成法と, SDS (Score Distillation Sampling) 方式で事前学習した2次元拡散モデルを用いて, 可観測領域の形状を再現する手法である。
論文 参考訳(メタデータ) (2023-12-07T19:30:55Z) - Disjoint Pose and Shape for 3D Face Reconstruction [4.096453902709292]
本稿では,ポーズと形状の相違を解消し,最適化を安定かつ正確にするためのエンドツーエンドパイプラインを提案する。
提案手法は, エンドツーエンドのトポロジ的整合性を実現し, 反復的な顔ポーズ改善を可能とし, 定量的および定性的な結果の両面で顕著な改善を示した。
論文 参考訳(メタデータ) (2023-08-26T15:18:32Z) - Neural Implicit Surface Reconstruction using Imaging Sonar [38.73010653104763]
画像ソナー(FLS)を用いた物体の高密度3次元再構成手法を提案する。
シーン幾何を点雲や体積格子としてモデル化する従来の手法と比較して、幾何をニューラル暗黙関数として表現する。
我々は,実データと合成データを用いて実験を行い,本アルゴリズムは,従来よりも高精細なFLS画像から高精細な表面形状を再構成し,それに伴うメモリオーバーヘッドに悩まされることを実証した。
論文 参考訳(メタデータ) (2022-09-17T02:23:09Z) - {\phi}-SfT: Shape-from-Template with a Physics-Based Deformation Model [69.27632025495512]
Shape-from-Template (SfT) 法では、単一の単眼RGBカメラから3次元表面の変形を推定する。
本稿では,物理シミュレーションによる2次元観察を解説する新しいSfT手法を提案する。
論文 参考訳(メタデータ) (2022-03-22T17:59:57Z) - Neural Radiance Fields Approach to Deep Multi-View Photometric Stereo [103.08512487830669]
多視点測光ステレオ問題(MVPS)に対する現代的な解法を提案する。
我々は、光度ステレオ(PS)画像形成モデルを用いて表面配向を取得し、それを多視点のニューラルラディアンス場表現とブレンドして物体の表面形状を復元する。
本手法は,多視点画像のニューラルレンダリングを行い,深部光度ステレオネットワークによって推定される表面の正規性を活用している。
論文 参考訳(メタデータ) (2021-10-11T20:20:03Z) - SIDER: Single-Image Neural Optimization for Facial Geometric Detail
Recovery [54.64663713249079]
SIDERは、教師なしの方法で単一の画像から詳細な顔形状を復元する新しい光度最適化手法である。
以前の作業とは対照的に、SIDERはデータセットの事前に依存せず、複数のビュー、照明変更、地上の真実の3D形状から追加の監視を必要としない。
論文 参考訳(メタデータ) (2021-08-11T22:34:53Z) - Pix2Surf: Learning Parametric 3D Surface Models of Objects from Images [64.53227129573293]
1つ以上の視点から見れば、新しいオブジェクトの3次元パラメトリック表面表現を学習する際の課題について検討する。
ビュー間で一貫した高品質なパラメトリックな3次元表面を生成できるニューラルネットワークを設計する。
提案手法は,共通対象カテゴリからの形状の公開データセットに基づいて,教師と訓練を行う。
論文 参考訳(メタデータ) (2020-08-18T06:33:40Z) - Shape from Projections via Differentiable Forward Projector for Computed
Tomography [4.304380400377787]
本稿では,3次元メッシュのフォワードモデルと最適化のギャップを埋める3次元メッシュの微分可能フォワードモデルを提案する。
提案した前方モデルを用いて,プロジェクションから直接3次元形状を再構成する。
単目的問題に対する実験結果から,提案手法はノイズシミュレーションデータ上で従来のボクセル法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2020-06-29T15:33:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。