論文の概要: A Gauss-Newton based Quantum Algorithm for Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2203.13939v4
- Date: Fri, 17 Jun 2022 04:24:52 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 20:38:58.302565
- Title: A Gauss-Newton based Quantum Algorithm for Combinatorial Optimization
- Title(参考訳): 組合せ最適化のためのガウスニュートン型量子アルゴリズム
- Authors: Mitsuharu Takeori, Takahiro Yamamoto, Ryutaro Ohira, Shungo Miyabe
- Abstract要約: 最適化問題に対するガウス・ニュートン型量子アルゴリズム(GNQA)を提案するが、最適条件下では、局所的なミニマやプラトーに閉じ込められることなく、最適解の1つに迅速に収束する。
我々のアプローチは、最適解を正確に表すテンソル積状態と、二項変数のすべての組み合わせを含むハミルトニアンに対して適切な関数を用いることによってそれらを緩和する。
そこで,本研究では,GNQAが収束特性と精度の両方において,他の最適化手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we present a Gauss-Newton based quantum algorithm (GNQA) for
combinatorial optimization problems that, under optimal conditions, rapidly
converges towards one of the optimal solutions without being trapped in local
minima or plateaus. Quantum optimization algorithms have been explored for
decades, but more recent investigations have been on variational quantum
algorithms, which often suffer from the aforementioned problems. Our approach
mitigates those by employing a tensor product state that accurately represents
the optimal solution, and an appropriate function for the Hamiltonian,
containing all the combinations of binary variables. Numerical experiments
presented here demonstrate the effectiveness of our approach, and they show
that GNQA outperforms other optimization methods in both convergence properties
and accuracy for all problems considered here. Finally, we briefly discuss the
potential impact of the approach to other problems, including those in quantum
chemistry and higher order binary optimization.
- Abstract(参考訳): 本研究では,最適条件下で局所極小あるいは高原に閉じ込められることなく,最適解の1つに急速に収束する組合せ最適化問題に対するgauss-newton based quantum algorithm (gnqa)を提案する。
量子最適化アルゴリズムは何十年にもわたって研究されてきたが、近年では変分量子アルゴリズムが研究されている。
このアプローチは、最適解を正確に表現するテンソル積状態と、二変数のすべての組合せを含むハミルトニアンに対して適切な関数を用いることでそれらを軽減する。
本手法の有効性を数値実験により示し, gnqaが収束特性と精度の両方において他の最適化手法よりも優れていることを示した。
最後に、量子化学や高次二項最適化など、他の問題に対するアプローチの潜在的影響について簡単に議論する。
関連論文リスト
- Performant near-term quantum combinatorial optimization [1.1999555634662633]
線形深度回路を用いた最適化問題に対する変分量子アルゴリズムを提案する。
我々のアルゴリズムは、ターゲット量子関数の各項を制御するために設計されたハミルトン生成器からなるアンサッツを使用する。
性能と資源最小化のアプローチは、潜在的な量子計算上の利点の候補として有望である、と結論付けます。
論文 参考訳(メタデータ) (2024-04-24T18:49:07Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Rapid quantum approaches for combinatorial optimisation inspired by
optimal state-transfer [3.591122855617648]
そこで本稿では,ハミルトニアンにインスパイアされた最適状態伝達問題に対処する新しい設計を提案する。
我々はこの新デザインの成功の数値的な証拠を提供する。
論文 参考訳(メタデータ) (2023-01-17T12:45:09Z) - A Comparative Study On Solving Optimization Problems With Exponentially
Fewer Qubits [0.0]
変分量子固有解法(VQE)に基づくアルゴリズムの評価と改良を行った。
我々は,問題を変分アンサッツにエンコードすることで生じる数値不安定性を強調する。
より少ないイテレーションでアンザッツの基底状態を求めるための古典的な最適化手法を提案する。
論文 参考訳(メタデータ) (2022-10-21T08:54:12Z) - A Constrained Optimization Approach to Bilevel Optimization with
Multiple Inner Minima [49.320758794766185]
そこで本研究では,両レベル問題を等価な制約付き最適化に変換する手法を提案する。
このようなアプローチには、(a)多重内極小問題への対処、(b)ジャコビアン計算のない完全一階効率など、いくつかの利点がある。
論文 参考訳(メタデータ) (2022-03-01T18:20:01Z) - Markov Chain Monte-Carlo Enhanced Variational Quantum Algorithms [0.0]
本稿では,モンテカルロ法を用いて解析的境界を時間複雑度に設定する変動量子アルゴリズムを提案する。
提案手法の有効性と,MaxCutインスタンスの量子回路シミュレーションによる解析の有効性を実証する。
論文 参考訳(メタデータ) (2021-12-03T23:03:44Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Improving the Quantum Approximate Optimization Algorithm with
postselection [0.0]
組合せ最適化は、短期的およびフォールトトレラントな量子コンピュータに想定される主な応用の1つである。
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm, QAOA)は3つの正則グラフ上のMaxCut問題に適用される。
理論上界と下界を導いており、満たされた辺の分数の一定(小さい)増加が実際に達成可能であることを示す。
論文 参考訳(メタデータ) (2020-11-10T22:17:50Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。