Variational quantum simulation of long-range interacting systems
- URL: http://arxiv.org/abs/2203.14281v3
- Date: Tue, 30 May 2023 08:20:36 GMT
- Title: Variational quantum simulation of long-range interacting systems
- Authors: Chufan Lyu, Xiaoyu Tang, Junning Li, Xusheng Xu, Man-Hong Yung and
Abolfazl Bayat
- Abstract summary: Variational quantum algorithms are the most promising approach in near-term quantum simulation.
We explore variational quantum algorithms for digital simulation of the ground state of long-range interacting systems.
We find that as the interaction becomes more long-ranged, the variational algorithms become less efficient.
- Score: 1.1744028458220428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Current quantum simulators suffer from multiple limitations such as short
coherence time, noisy operations, faulty readout and restricted qubit
connectivity in some platforms. Variational quantum algorithms are the most
promising approach in near-term quantum simulation to achieve practical quantum
advantage over classical computers. Here, we explore variational quantum
algorithms, with different levels of qubit connectivity, for digital simulation
of the ground state of long-range interacting systems as well as generation of
spin squeezed states. We find that as the interaction becomes more long-ranged,
the variational algorithms become less efficient, achieving lower fidelity and
demanding more optimization iterations. In particular, when the system is near
its criticality the efficiency is even lower. Increasing the connectivity
between distant qubits improves the results, even with less quantum and
classical resources. Our results show that by mixing circuit layers with
different levels of connectivity one can sensibly improve the performance.
Interestingly, the order of layers becomes very important and grouping the
layers with long-distance connectivity at the beginning of the circuit
outperforms other permutations. The same design of circuits can also be used to
variationally produce spin squeezed states, as a resource for quantum
metrology.
Related papers
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Combining Matrix Product States and Noisy Quantum Computers for Quantum
Simulation [0.0]
Matrix Product States (MPS) and Operators (MPO) have been proven to be a powerful tool to study quantum many-body systems.
We show that using classical knowledge in the form of tensor networks provides a way to better use limited quantum resources.
arXiv Detail & Related papers (2023-05-30T17:21:52Z) - Numerical simulations of long-range open quantum many-body dynamics with
tree tensor networks [0.0]
We introduce a numerical method for open quantum systems, based on tree tensor networks.
Such a structure is expected to improve the encoding of many-body correlations.
We adopt an integration scheme suited for long-range interactions and applications to dissipative dynamics.
arXiv Detail & Related papers (2023-04-12T18:00:03Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
Variational quantum-classical hybrid algorithms are seen as a promising strategy for solving practical problems on quantum computers in the near term.
Here, we introduce the fast-and-slow algorithm, which uses gradients to identify a promising region in Bayesian space.
Our results move variational quantum algorithms closer to their envisioned applications in quantum chemistry, optimization, and quantum simulation problems.
arXiv Detail & Related papers (2022-03-04T17:48:57Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
We introduce a new variational quantum algorithm that benefits from two innovations: multi-basis graph complexity and nonlinear activation functions.
Our results in increased optimization performance, two increase in effective landscapes and a reduction in measurement progress.
arXiv Detail & Related papers (2021-06-24T20:16:02Z) - Exploiting dynamic quantum circuits in a quantum algorithm with
superconducting qubits [0.207811670193148]
We build dynamic quantum circuits on a superconducting-based quantum system.
We exploit one of the most fundamental quantum algorithms, quantum phase estimation, in its adaptive version.
We demonstrate that the version of real-time quantum computing with dynamic circuits can offer a substantial and tangible advantage.
arXiv Detail & Related papers (2021-02-02T18:51:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.