EnCBP: A New Benchmark Dataset for Finer-Grained Cultural Background
Prediction in English
- URL: http://arxiv.org/abs/2203.14498v1
- Date: Mon, 28 Mar 2022 04:57:17 GMT
- Title: EnCBP: A New Benchmark Dataset for Finer-Grained Cultural Background
Prediction in English
- Authors: Weicheng Ma, Samiha Datta, Lili Wang, Soroush Vosoughi
- Abstract summary: We augment natural language processing models with cultural background features.
We show that there are noticeable differences in linguistic expressions among five English-speaking countries and across four states in the US.
Our findings support the importance of cultural background modeling to a wide variety of NLP tasks and demonstrate the applicability of EnCBP in culture-related research.
- Score: 25.38572483508948
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: While cultural backgrounds have been shown to affect linguistic expressions,
existing natural language processing (NLP) research on culture modeling is
overly coarse-grained and does not examine cultural differences among speakers
of the same language. To address this problem and augment NLP models with
cultural background features, we collect, annotate, manually validate, and
benchmark EnCBP, a finer-grained news-based cultural background prediction
dataset in English. Through language modeling (LM) evaluations and manual
analyses, we confirm that there are noticeable differences in linguistic
expressions among five English-speaking countries and across four states in the
US. Additionally, our evaluations on nine syntactic (CoNLL-2003), semantic
(PAWS-Wiki, QNLI, STS-B, and RTE), and psycholinguistic tasks (SST-5, SST-2,
Emotion, and Go-Emotions) show that, while introducing cultural background
information does not benefit the Go-Emotions task due to text domain conflicts,
it noticeably improves deep learning (DL) model performance on other tasks. Our
findings strongly support the importance of cultural background modeling to a
wide variety of NLP tasks and demonstrate the applicability of EnCBP in
culture-related research.
Related papers
- Self-Alignment: Improving Alignment of Cultural Values in LLMs via In-Context Learning [13.034603322224548]
We present a simple and inexpensive method that uses a combination of in-context learning (ICL) and human survey data.
We show that our method could prove useful in test languages other than English and can improve alignment to the cultural values that correspond to a range of culturally diverse countries.
arXiv Detail & Related papers (2024-08-29T12:18:04Z) - Evaluating Cultural Adaptability of a Large Language Model via Simulation of Synthetic Personas [4.0937229334408185]
We employ GPT-3.5 to reproduce reactions to persuasive news articles from 7,286 participants from 15 countries.
Our analysis shows that specifying a person's country of residence improves GPT-3.5's alignment with their responses.
In contrast, using native language prompting introduces shifts that significantly reduce overall alignment.
arXiv Detail & Related papers (2024-08-13T14:32:43Z) - Extrinsic Evaluation of Cultural Competence in Large Language Models [53.626808086522985]
We focus on extrinsic evaluation of cultural competence in two text generation tasks.
We evaluate model outputs when an explicit cue of culture, specifically nationality, is perturbed in the prompts.
We find weak correlations between text similarity of outputs for different countries and the cultural values of these countries.
arXiv Detail & Related papers (2024-06-17T14:03:27Z) - CulturePark: Boosting Cross-cultural Understanding in Large Language Models [63.452948673344395]
This paper introduces CulturePark, an LLM-powered multi-agent communication framework for cultural data collection.
It generates high-quality cross-cultural dialogues encapsulating human beliefs, norms, and customs.
We evaluate these models across three downstream tasks: content moderation, cultural alignment, and cultural education.
arXiv Detail & Related papers (2024-05-24T01:49:02Z) - CIVICS: Building a Dataset for Examining Culturally-Informed Values in Large Language Models [59.22460740026037]
"CIVICS: Culturally-Informed & Values-Inclusive Corpus for Societal impacts" dataset is designed to evaluate the social and cultural variation of Large Language Models (LLMs)
We create a hand-crafted, multilingual dataset of value-laden prompts which address specific socially sensitive topics, including LGBTQI rights, social welfare, immigration, disability rights, and surrogacy.
arXiv Detail & Related papers (2024-05-22T20:19:10Z) - Multilingual Evaluation of Semantic Textual Relatedness [0.0]
Semantic Textual Relatedness (STR) goes beyond superficial word overlap, considering linguistic elements and non-linguistic factors like topic, sentiment, and perspective.
Prior NLP research has predominantly focused on English, limiting its applicability across languages.
We explore STR in Marathi, Hindi, Spanish, and English, unlocking the potential for information retrieval, machine translation, and more.
arXiv Detail & Related papers (2024-04-13T17:16:03Z) - Massively Multi-Cultural Knowledge Acquisition & LM Benchmarking [48.21982147529661]
This paper introduces a novel approach for massively multicultural knowledge acquisition.
Our method strategically navigates from densely informative Wikipedia documents on cultural topics to an extensive network of linked pages.
Our work marks an important step towards deeper understanding and bridging the gaps of cultural disparities in AI.
arXiv Detail & Related papers (2024-02-14T18:16:54Z) - Not All Countries Celebrate Thanksgiving: On the Cultural Dominance in
Large Language Models [89.94270049334479]
This paper identifies a cultural dominance issue within large language models (LLMs)
LLMs often provide inappropriate English-culture-related answers that are not relevant to the expected culture when users ask in non-English languages.
arXiv Detail & Related papers (2023-10-19T05:38:23Z) - Cultural Alignment in Large Language Models: An Explanatory Analysis Based on Hofstede's Cultural Dimensions [10.415002561977655]
This research proposes a Cultural Alignment Test (Hoftede's CAT) to quantify cultural alignment using Hofstede's cultural dimension framework.
We quantitatively evaluate large language models (LLMs) against the cultural dimensions of regions like the United States, China, and Arab countries.
Our results quantify the cultural alignment of LLMs and reveal the difference between LLMs in explanatory cultural dimensions.
arXiv Detail & Related papers (2023-08-25T14:50:13Z) - Multi-lingual and Multi-cultural Figurative Language Understanding [69.47641938200817]
Figurative language permeates human communication, but is relatively understudied in NLP.
We create a dataset for seven diverse languages associated with a variety of cultures: Hindi, Indonesian, Javanese, Kannada, Sundanese, Swahili and Yoruba.
Our dataset reveals that each language relies on cultural and regional concepts for figurative expressions, with the highest overlap between languages originating from the same region.
All languages exhibit a significant deficiency compared to English, with variations in performance reflecting the availability of pre-training and fine-tuning data.
arXiv Detail & Related papers (2023-05-25T15:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.