Multilingual Evaluation of Semantic Textual Relatedness
- URL: http://arxiv.org/abs/2404.09047v1
- Date: Sat, 13 Apr 2024 17:16:03 GMT
- Title: Multilingual Evaluation of Semantic Textual Relatedness
- Authors: Sharvi Endait, Srushti Sonavane, Ridhima Sinare, Pritika Rohera, Advait Naik, Dipali Kadam,
- Abstract summary: Semantic Textual Relatedness (STR) goes beyond superficial word overlap, considering linguistic elements and non-linguistic factors like topic, sentiment, and perspective.
Prior NLP research has predominantly focused on English, limiting its applicability across languages.
We explore STR in Marathi, Hindi, Spanish, and English, unlocking the potential for information retrieval, machine translation, and more.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The explosive growth of online content demands robust Natural Language Processing (NLP) techniques that can capture nuanced meanings and cultural context across diverse languages. Semantic Textual Relatedness (STR) goes beyond superficial word overlap, considering linguistic elements and non-linguistic factors like topic, sentiment, and perspective. Despite its pivotal role, prior NLP research has predominantly focused on English, limiting its applicability across languages. Addressing this gap, our paper dives into capturing deeper connections between sentences beyond simple word overlap. Going beyond English-centric NLP research, we explore STR in Marathi, Hindi, Spanish, and English, unlocking the potential for information retrieval, machine translation, and more. Leveraging the SemEval-2024 shared task, we explore various language models across three learning paradigms: supervised, unsupervised, and cross-lingual. Our comprehensive methodology gains promising results, demonstrating the effectiveness of our approach. This work aims to not only showcase our achievements but also inspire further research in multilingual STR, particularly for low-resourced languages.
Related papers
- BRIGHTER: BRIdging the Gap in Human-Annotated Textual Emotion Recognition Datasets for 28 Languages [93.92804151830744]
We present BRIGHTER, a collection of emotion-annotated datasets in 28 different languages.
We describe the data collection and annotation processes and the challenges of building these datasets.
We show that BRIGHTER datasets are a step towards bridging the gap in text-based emotion recognition.
arXiv Detail & Related papers (2025-02-17T15:39:50Z) - Beyond English: The Impact of Prompt Translation Strategies across Languages and Tasks in Multilingual LLMs [13.458891794688551]
We evaluate pre-translation strategies across 35 languages covering both low and high-resource languages.
Our experiments show the impact of factors as similarity to English, translation quality and the size of pre-trained data, on the model performance with pre-translation.
arXiv Detail & Related papers (2025-02-13T13:49:30Z) - How does a Multilingual LM Handle Multiple Languages? [0.0]
This study critically examines capabilities in multilingual understanding, semantic representation, and cross-lingual knowledge transfer.
It assesses semantic similarity by analyzing multilingual word embeddings for consistency using cosine similarity.
It examines BLOOM-1.7B and Qwen2 through Named Entity Recognition and sentence similarity tasks to understand their linguistic structures.
arXiv Detail & Related papers (2025-02-06T18:08:14Z) - Lens: Rethinking Multilingual Enhancement for Large Language Models [70.85065197789639]
Lens is a novel approach to enhance multilingual capabilities of large language models (LLMs)
It operates by manipulating the hidden representations within the language-agnostic and language-specific subspaces from top layers of LLMs.
It achieves superior results with much fewer computational resources compared to existing post-training approaches.
arXiv Detail & Related papers (2024-10-06T08:51:30Z) - Breaking Boundaries: Investigating the Effects of Model Editing on Cross-linguistic Performance [6.907734681124986]
This paper strategically identifies the need for linguistic equity by examining several knowledge editing techniques in multilingual contexts.
We evaluate the performance of models such as Mistral, TowerInstruct, OpenHathi, Tamil-Llama, and Kan-Llama across languages including English, German, French, Italian, Spanish, Hindi, Tamil, and Kannada.
arXiv Detail & Related papers (2024-06-17T01:54:27Z) - A Survey on Large Language Models with Multilingualism: Recent Advances and New Frontiers [51.8203871494146]
The rapid development of Large Language Models (LLMs) demonstrates remarkable multilingual capabilities in natural language processing.
Despite the breakthroughs of LLMs, the investigation into the multilingual scenario remains insufficient.
This survey aims to help the research community address multilingual problems and provide a comprehensive understanding of the core concepts, key techniques, and latest developments in multilingual natural language processing based on LLMs.
arXiv Detail & Related papers (2024-05-17T17:47:39Z) - Decomposed Prompting: Unveiling Multilingual Linguistic Structure
Knowledge in English-Centric Large Language Models [12.700783525558721]
English-centric Large Language Models (LLMs) like GPT-3 and LLaMA display a remarkable ability to perform multilingual tasks.
This paper introduces the decomposed prompting approach to probe the linguistic structure understanding of these LLMs in sequence labeling tasks.
arXiv Detail & Related papers (2024-02-28T15:15:39Z) - Quantifying the Dialect Gap and its Correlates Across Languages [69.18461982439031]
This work will lay the foundation for furthering the field of dialectal NLP by laying out evident disparities and identifying possible pathways for addressing them through mindful data collection.
arXiv Detail & Related papers (2023-10-23T17:42:01Z) - Relationship of the language distance to English ability of a country [0.0]
We introduce a novel solution to measure the semantic dissimilarity between languages.
We empirically examine the effectiveness of the proposed semantic language distance.
The experimental results show that the language distance demonstrates negative influence on a country's average English ability.
arXiv Detail & Related papers (2022-11-15T02:40:00Z) - Cross-Lingual Ability of Multilingual Masked Language Models: A Study of
Language Structure [54.01613740115601]
We study three language properties: constituent order, composition and word co-occurrence.
Our main conclusion is that the contribution of constituent order and word co-occurrence is limited, while the composition is more crucial to the success of cross-linguistic transfer.
arXiv Detail & Related papers (2022-03-16T07:09:35Z) - AM2iCo: Evaluating Word Meaning in Context across Low-ResourceLanguages
with Adversarial Examples [51.048234591165155]
We present AM2iCo, Adversarial and Multilingual Meaning in Context.
It aims to faithfully assess the ability of state-of-the-art (SotA) representation models to understand the identity of word meaning in cross-lingual contexts.
Results reveal that current SotA pretrained encoders substantially lag behind human performance.
arXiv Detail & Related papers (2021-04-17T20:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.