論文の概要: Deep Reinforcement Learning for Data-Driven Adaptive Scanning in
Ptychography
- arxiv url: http://arxiv.org/abs/2203.15413v1
- Date: Tue, 29 Mar 2022 10:25:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-03-31 00:38:14.274486
- Title: Deep Reinforcement Learning for Data-Driven Adaptive Scanning in
Ptychography
- Title(参考訳): Ptychographyにおけるデータ駆動型適応走査のための深層強化学習
- Authors: Marcel Schloz, Johannes M\"uller, Thomas C. Pekin, Wouter Van den
Broek, Christoph T. Koch
- Abstract要約: 提案手法は強化学習(RL)により訓練された深層学習モデルに基づいて構築される。
適応型スキャンによる同等の低用量実験は, 再現能の点で従来のポチトグラフィー実験より優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a method that lowers the dose required for a ptychographic
reconstruction by adaptively scanning the specimen, thereby providing the
required spatial information redundancy in the regions of highest importance.
The proposed method is built upon a deep learning model that is trained by
reinforcement learning (RL), using prior knowledge of the specimen structure
from training data sets. We show that equivalent low-dose experiments using
adaptive scanning outperform conventional ptychography experiments in terms of
reconstruction resolution.
- Abstract(参考訳): そこで本研究では,標本を適応的に走査することにより,ptychographyの再構築に必要な線量を削減する手法を提案する。
提案手法は,学習データセットから標本構造の事前知識を用いて,強化学習(RL)により訓練された深層学習モデルに基づいて構築される。
適応型スキャンによる同等の低用量実験は, 再現能の点で従来のポチトグラフィー実験より優れていた。
関連論文リスト
- CT-SDM: A Sampling Diffusion Model for Sparse-View CT Reconstruction across All Sampling Rates [16.985836345715963]
Sparse view X-ray Computed tomography は放射線線量減少を緩和する現代的手法として登場した。
深層学習を用いた最近の研究は, Sparse-View Computed Tomography (SVCT) のアーティファクトの除去に有望な進展をもたらした。
本研究では,任意のサンプリングレートで高性能SVCT再構成を実現するための適応的再構成手法を提案する。
論文 参考訳(メタデータ) (2024-09-03T03:06:15Z) - Self-STORM: Deep Unrolled Self-Supervised Learning for Super-Resolution Microscopy [55.2480439325792]
我々は、シーケンス固有のモデルベースのオートエンコーダをトレーニングすることで、そのようなデータの必要性を軽減する、深層無学習の自己教師付き学習を導入する。
提案手法は, 監視対象の性能を超過する。
論文 参考訳(メタデータ) (2024-03-25T17:40:32Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - A Deep Generative Approach to Oversampling in Ptychography [9.658250977094562]
ptychographyの大きな欠点は、長いデータ取得時間である。
本稿では, 深層生成ネットワークから抽出したデータを用いて, わずかに取得したデータやアンダーサンプルデータを補完する手法を提案する。
深層生成ネットワークを事前学習し、データ収集時に出力を計算できるので、実験データとデータ取得時間を削減することができる。
論文 参考訳(メタデータ) (2022-07-28T22:02:01Z) - Bayesian Experimental Design for Computed Tomography with the Linearised
Deep Image Prior [0.19573380763700707]
本稿では,線形化深度画像を用いた新しい手法を提案する。
パイロット測度から得られる情報を、角度選択基準に組み込むことができる。
優先方向の合成データセットでは、線形化されたDIP設計により、スキャン数を最大30%削減できる。
論文 参考訳(メタデータ) (2022-07-11T12:45:31Z) - Dataset-free Deep learning Method for Low-Dose CT Image Reconstruction [33.193423488300255]
本稿では,LDCT画像再構成のための教師なしディープラーニング手法を提案する。
提案手法は,ランダムな重み付きディープネットワークによるベイズ推論の再パラメータ化手法と,追加の総変分法(TV)正則化を併用して構築する。
実験の結果,提案手法は既存のデータセットのない画像再構成手法よりも顕著に優れていることがわかった。
論文 参考訳(メタデータ) (2022-05-01T13:05:04Z) - Homography augumented momentum constrastive learning for SAR image
retrieval [3.9743795764085545]
本稿では, ホログラフィ変換を用いた画像検索手法を提案する。
また,ラベル付け手順を必要としないコントラスト学習によって誘導されるDNNのトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-21T17:27:07Z) - Self Context and Shape Prior for Sensorless Freehand 3D Ultrasound
Reconstruction [61.62191904755521]
3DフリーハンドUSは、幅広い範囲とフリーフォームスキャンを提供することで、この問題に対処することを約束している。
既存のディープラーニングベースの手法は、スキルシーケンスの基本ケースのみに焦点を当てている。
複雑なスキルシーケンスを考慮したセンサレスフリーハンドUS再構成手法を提案する。
論文 参考訳(メタデータ) (2021-07-31T16:06:50Z) - CutPaste: Self-Supervised Learning for Anomaly Detection and
Localization [59.719925639875036]
通常のトレーニングデータのみを用いて異常検知器を構築するためのフレームワークを提案する。
まず、自己教師付き深層表現を学習し、学習した表現の上に生成的1クラス分類器を構築する。
MVTec異常検出データセットに関する実証研究は,提案アルゴリズムが実世界の様々な欠陥を検出可能であることを実証している。
論文 参考訳(メタデータ) (2021-04-08T19:04:55Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Cheaper Pre-training Lunch: An Efficient Paradigm for Object Detection [86.0580214485104]
本稿では,オブジェクト検出のための汎用的で効率的な事前学習パラダイムであるMontage事前学習を提案する。
Montage事前トレーニングは、ターゲット検出データセットのみを必要とするが、広く採用されているImageNet事前トレーニングと比較して、計算リソースは1/4しかない。
モンタージュ事前学習の効率と有効性は、MS-COCOデータセットの広範な実験によって検証される。
論文 参考訳(メタデータ) (2020-04-25T16:09:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。