Universal neural network potentials as descriptors: Towards scalable chemical property prediction using quantum and classical computers
- URL: http://arxiv.org/abs/2402.18433v2
- Date: Tue, 16 Jul 2024 06:17:14 GMT
- Title: Universal neural network potentials as descriptors: Towards scalable chemical property prediction using quantum and classical computers
- Authors: Tomoya Shiota, Kenji Ishihara, Wataru Mizukami,
- Abstract summary: We present a versatile approach that uses the intermediate information of a universal neural network potential as a general-purpose descriptor for chemical property prediction.
We show that transfer learning with graph neural network potentials such as M3GNet and MACE achieves accuracy comparable to state-of-the-art methods for predicting the NMR chemical shifts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate prediction of diverse chemical properties is crucial for advancing molecular design and materials discovery. Here we present a versatile approach that uses the intermediate information of a universal neural network potential as a general-purpose descriptor for chemical property prediction. Our method is based on the insight that by training a sophisticated neural network architecture for universal force fields, it learns transferable representations of atomic environments. We show that transfer learning with graph neural network potentials such as M3GNet and MACE achieves accuracy comparable to state-of-the-art methods for predicting the NMR chemical shifts of using quantum machine learning as well as a standard classical regression model, despite the compactness of its descriptors. In particular, the MACE descriptor demonstrates the highest accuracy to date on the ${^{13}}$C NMR chemical shift benchmarks for drug molecules. This work provides an efficient way to accurately predict properties, potentially accelerating the discovery of new molecules and materials.
Related papers
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
We propose a SMILES-based underlineem Molecular underlineem Language underlineem Model, which randomly masking SMILES subsequences corresponding to specific molecular atoms.
This technique aims to compel the model to better infer molecular structures and properties, thus enhancing its predictive capabilities.
arXiv Detail & Related papers (2024-11-03T01:56:15Z) - Pushing the Limits of All-Atom Geometric Graph Neural Networks: Pre-Training, Scaling and Zero-Shot Transfer [15.302727191576784]
Geometric graph neural networks (Geom-GNNs) with all-atom information have transformed atomistic simulations.
We study the scaling behaviors of Geom-GNNs under self-supervised pre-training, supervised and unsupervised learning setups.
We show how all-atom graph embedding can be organically combined with other neural architectures to enhance the expressive power.
arXiv Detail & Related papers (2024-10-29T03:07:33Z) - Hybrid Quantum Graph Neural Network for Molecular Property Prediction [0.17747993681679466]
We develop a free hybrid quantum gradient classical convoluted graph neural network to predict formation energies of perovskite materials.
Our study suggests a new pathway to explore how quantum feature encoding and parametric quantum circuits can yield drastic improvements of complex machine learning algorithms.
arXiv Detail & Related papers (2024-05-08T16:43:25Z) - QH9: A Quantum Hamiltonian Prediction Benchmark for QM9 Molecules [69.25826391912368]
We generate a new Quantum Hamiltonian dataset, named as QH9, to provide precise Hamiltonian matrices for 999 or 2998 molecular dynamics trajectories.
We show that current machine learning models have the capacity to predict Hamiltonian matrices for arbitrary molecules.
arXiv Detail & Related papers (2023-06-15T23:39:07Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
We propose a well-designed hierarchical informative graph neural networks framework (termed HiGNN) for predicting molecular property.
Experiments demonstrate that HiGNN achieves state-of-the-art predictive performance on many challenging drug discovery-associated benchmark datasets.
arXiv Detail & Related papers (2022-08-30T05:16:15Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
Graph neural networks (GNNs) are a novel machine learning method that directly work on the molecular graph.
GNNs allow to learn properties in an end-to-end fashion, thereby avoiding the need for informative descriptors.
We describe the fundamentals of GNNs and demonstrate the application of GNNs via two examples for molecular property prediction.
arXiv Detail & Related papers (2022-07-25T11:30:44Z) - Neural network enhanced measurement efficiency for molecular
groundstates [63.36515347329037]
We adapt common neural network models to learn complex groundstate wavefunctions for several molecular qubit Hamiltonians.
We find that using a neural network model provides a robust improvement over using single-copy measurement outcomes alone to reconstruct observables.
arXiv Detail & Related papers (2022-06-30T17:45:05Z) - Automatic Identification of Chemical Moieties [11.50343898633327]
We introduce a method to automatically identify chemical moieties from atomic representations using message-passing neural networks.
The versatility of our approach is demonstrated by enabling the selection of representative entries in chemical databases.
arXiv Detail & Related papers (2022-03-30T10:58:23Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
We develop a novel optimal transport-based algorithm termed MROT to enhance their generalization capability for molecular regression problems.
MROT significantly outperforms state-of-the-art models, showing promising potential in accelerating the discovery of new substances.
arXiv Detail & Related papers (2022-02-13T04:56:18Z) - Gaussian Moments as Physically Inspired Molecular Descriptors for
Accurate and Scalable Machine Learning Potentials [0.0]
We propose a machine learning method for constructing high-dimensional potential energy surfaces based on feed-forward neural networks.
The accuracy of the developed approach in representing both chemical and configurational spaces is comparable to the one of several established machine learning models.
arXiv Detail & Related papers (2021-09-15T16:46:46Z) - Graph Neural Network for Hamiltonian-Based Material Property Prediction [56.94118357003096]
We present and compare several different graph convolution networks that are able to predict the band gap for inorganic materials.
The models are developed to incorporate two different features: the information of each orbital itself and the interaction between each other.
The results show that our model can get a promising prediction accuracy with cross-validation.
arXiv Detail & Related papers (2020-05-27T13:32:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.