Distributed quantum error correction for chip-level catastrophic errors
- URL: http://arxiv.org/abs/2203.16488v1
- Date: Wed, 30 Mar 2022 17:28:02 GMT
- Title: Distributed quantum error correction for chip-level catastrophic errors
- Authors: Qian Xu, Alireza Seif, Haoxiong Yan, Nam Mannucci, Bernard Ousmane
Sane, Rodney Van Meter, Andrew N. Cleland, Liang Jiang
- Abstract summary: Cosmic ray events severely impact the operation of a quantum computer by causing chip-level catastrophic errors.
Here, we present a distributed error correction scheme to combat the devastating effect of such events.
We show that our scheme is fault tolerant against chip-level catastrophic errors.
- Score: 4.762218318711338
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Quantum error correction holds the key to scaling up quantum computers.
Cosmic ray events severely impact the operation of a quantum computer by
causing chip-level catastrophic errors, essentially erasing the information
encoded in a chip. Here, we present a distributed error correction scheme to
combat the devastating effect of such events by introducing an additional layer
of quantum erasure error correcting code across separate chips. We show that
our scheme is fault tolerant against chip-level catastrophic errors and discuss
its experimental implementation using superconducting qubits with microwave
links. Our analysis shows that in state-of-the-art experiments, it is possible
to suppress the rate of these errors from 1 per 10 seconds to less than 1 per
month.
Related papers
- Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Deep Quantum Error Correction [73.54643419792453]
Quantum error correction codes (QECC) are a key component for realizing the potential of quantum computing.
In this work, we efficiently train novel emphend-to-end deep quantum error decoders.
The proposed method demonstrates the power of neural decoders for QECC by achieving state-of-the-art accuracy.
arXiv Detail & Related papers (2023-01-27T08:16:26Z) - Syndrome-Derived Error Rates as a Benchmark of Quantum Hardware [0.0]
Quantum error correcting codes are designed to pinpoint exactly when and where errors occur in quantum circuits.
By analyzing the outputs of even small-scale quantum error correction circuits, a detailed picture can be constructed of error processes across a quantum device.
arXiv Detail & Related papers (2022-07-01T17:10:51Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Realization of an Error-Correcting Surface Code with Superconducting
Qubits [20.668901523826936]
We experimentally implement an error-correcting surface code, the distance-3 surface code, on the textitZuchongzhi 2.1 superconducting quantum processor.
By executing several consecutive error correction cycles, the logical error can be significantly reduced.
This experiment represents a fully functional instance of an error-correcting surface code, providing a key step on the path towards scalable fault-tolerant quantum computing.
arXiv Detail & Related papers (2021-12-27T04:43:05Z) - Realizing Repeated Quantum Error Correction in a Distance-Three Surface
Code [42.394110572265376]
We demonstrate quantum error correction using the surface code, which is known for its exceptionally high tolerance to errors.
In an error correction cycle taking only $1.1,mu$s, we demonstrate the preservation of four cardinal states of the logical qubit.
arXiv Detail & Related papers (2021-12-07T13:58:44Z) - Exponential suppression of bit or phase flip errors with repetitive
error correction [56.362599585843085]
State-of-the-art quantum platforms typically have physical error rates near $10-3$.
Quantum error correction (QEC) promises to bridge this divide by distributing quantum logical information across many physical qubits.
We implement 1D repetition codes embedded in a 2D grid of superconducting qubits which demonstrate exponential suppression of bit or phase-flip errors.
arXiv Detail & Related papers (2021-02-11T17:11:20Z) - Removing leakage-induced correlated errors in superconducting quantum
error correction [1.8397027011844889]
Quantum computing can become scalable through error correction, but logical error rates only decrease with system size when physical errors are sufficiently uncorrelated.
Here, we report a reset protocol that returns a qubit to the ground state from all relevant higher level states.
We find lower rates of logical errors and an improved scaling and stability of error suppression with increasing qubit number.
arXiv Detail & Related papers (2021-02-11T17:11:11Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z) - Testing a Quantum Error-Correcting Code on Various Platforms [5.0745290104790035]
We propose a simple quantum error-correcting code for the detected amplitude damping channel.
We implement the encoding, the channel, and the recovery on an optical platform, the IBM Q System, and a nuclear magnetic resonance system.
arXiv Detail & Related papers (2020-01-22T13:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.