SimPO: Simultaneous Prediction and Optimization
- URL: http://arxiv.org/abs/2204.00062v1
- Date: Thu, 31 Mar 2022 20:01:36 GMT
- Title: SimPO: Simultaneous Prediction and Optimization
- Authors: Bing Zhang, Yuya Jeremy Ong, Taiga Nakamura
- Abstract summary: We propose a formulation for the Simultaneous Prediction and Optimization (SimPO) framework.
This framework introduces the use of a joint weighted loss of a decision-driven predictive ML model and an optimization objective function.
- Score: 3.181417685380586
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning (ML) models are integrated within the context of a
larger system as part of a key component for decision making processes.
Concretely, predictive models are often employed in estimating the parameters
for the input values that are utilized for optimization models as isolated
processes. Traditionally, the predictive models are built first, then the model
outputs are used to generate decision values separately. However, it is often
the case that the prediction values that are trained independently of the
optimization process produce sub-optimal solutions. In this paper, we propose a
formulation for the Simultaneous Prediction and Optimization (SimPO) framework.
This framework introduces the use of a joint weighted loss of a decision-driven
predictive ML model and an optimization objective function, which is optimized
end-to-end directly through gradient-based methods.
Related papers
- An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - Multi-Reference Preference Optimization for Large Language Models [56.84730239046117]
We introduce a novel closed-form formulation for direct preference optimization using multiple reference models.
The resulting algorithm, Multi-Reference Preference Optimization (MRPO), leverages broader prior knowledge from diverse reference models.
Our experiments demonstrate that LLMs finetuned with MRPO generalize better in various preference data, regardless of data scarcity or abundance.
arXiv Detail & Related papers (2024-05-26T00:29:04Z) - Soft Preference Optimization: Aligning Language Models to Expert Distributions [40.84391304598521]
SPO is a method for aligning generative models, such as Large Language Models (LLMs), with human preferences.
SPO integrates preference loss with a regularization term across the model's entire output distribution.
We showcase SPO's methodology, its theoretical foundation, and its comparative advantages in simplicity, computational efficiency, and alignment precision.
arXiv Detail & Related papers (2024-04-30T19:48:55Z) - Training Survival Models using Scoring Rules [9.330089124239086]
Survival Analysis provides critical insights for incomplete time-to-event data.
It is also an important example of probabilistic machine learning.
We establish different parametric and non-parametric sub-frameworks that allow different degrees of flexibility.
We show that using our framework, we can recover various parametric models and demonstrate that optimization works equally well when compared to likelihood-based methods.
arXiv Detail & Related papers (2024-03-19T20:58:38Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - There is No Silver Bullet: Benchmarking Methods in Predictive Combinatorial Optimization [59.27851754647913]
Predictive optimization is the precise modeling of many real-world applications, including energy cost-aware scheduling and budget allocation on advertising.
There is no systematic benchmark of both approaches, including the specific design choices at the module level.
Our study shows that PnO approaches are better than PtO on 7 out of 8 benchmarks, but there is no silver bullet found for the specific design choices of PnO.
arXiv Detail & Related papers (2023-11-13T13:19:34Z) - Approximate Bayesian Optimisation for Neural Networks [6.921210544516486]
A body of work has been done to automate machine learning algorithm to highlight the importance of model choice.
The necessity to solve the analytical tractability and the computational feasibility in a idealistic fashion enables to ensure the efficiency and the applicability.
arXiv Detail & Related papers (2021-08-27T19:03:32Z) - Conservative Objective Models for Effective Offline Model-Based
Optimization [78.19085445065845]
Computational design problems arise in a number of settings, from synthetic biology to computer architectures.
We propose a method that learns a model of the objective function that lower bounds the actual value of the ground-truth objective on out-of-distribution inputs.
COMs are simple to implement and outperform a number of existing methods on a wide range of MBO problems.
arXiv Detail & Related papers (2021-07-14T17:55:28Z) - An Extended Multi-Model Regression Approach for Compressive Strength
Prediction and Optimization of a Concrete Mixture [0.0]
A model based evaluation of concrete compressive strength is of high value, both for the purpose of strength prediction and the mixture optimization.
We take a further step towards improving the accuracy of the prediction model via the weighted combination of multiple regression methods.
A proposed (GA)-based mixture optimization is proposed, building on the obtained multi-regression model.
arXiv Detail & Related papers (2021-06-13T16:10:32Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z) - Automatic selection of basis-adaptive sparse polynomial chaos expansions
for engineering applications [0.0]
We describe three state-of-the-art basis-adaptive approaches for sparse chaos expansions.
We conduct an extensive benchmark in terms of global approximation accuracy on a large set of computational models.
We introduce a novel solver and basis adaptivity selection scheme guided by cross-validation error.
arXiv Detail & Related papers (2020-09-10T12:13:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.