Regret Bounds and Experimental Design for Estimate-then-Optimize
- URL: http://arxiv.org/abs/2210.15576v1
- Date: Thu, 27 Oct 2022 16:13:48 GMT
- Title: Regret Bounds and Experimental Design for Estimate-then-Optimize
- Authors: Samuel Tan, Peter I. Frazier
- Abstract summary: In practical applications, data is used to make decisions in two steps: estimation and optimization.
Errors in the estimation step can lead estimate-then-optimize to sub-optimal decisions.
We provide a novel bound on this regret for smooth and unconstrained optimization problems.
- Score: 9.340611077939828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In practical applications, data is used to make decisions in two steps:
estimation and optimization. First, a machine learning model estimates
parameters for a structural model relating decisions to outcomes. Second, a
decision is chosen to optimize the structural model's predicted outcome as if
its parameters were correctly estimated. Due to its flexibility and simple
implementation, this ``estimate-then-optimize'' approach is often used for
data-driven decision-making. Errors in the estimation step can lead
estimate-then-optimize to sub-optimal decisions that result in regret, i.e., a
difference in value between the decision made and the best decision available
with knowledge of the structural model's parameters. We provide a novel bound
on this regret for smooth and unconstrained optimization problems. Using this
bound, in settings where estimated parameters are linear transformations of
sub-Gaussian random vectors, we provide a general procedure for experimental
design to minimize the regret resulting from estimate-then-optimize. We
demonstrate our approach on simple examples and a pandemic control application.
Related papers
- Learning Joint Models of Prediction and Optimization [56.04498536842065]
Predict-Then-Then framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by joint predictive models.
arXiv Detail & Related papers (2024-09-07T19:52:14Z) - An incremental preference elicitation-based approach to learning potentially non-monotonic preferences in multi-criteria sorting [53.36437745983783]
We first construct a max-margin optimization-based model to model potentially non-monotonic preferences.
We devise information amount measurement methods and question selection strategies to pinpoint the most informative alternative in each iteration.
Two incremental preference elicitation-based algorithms are developed to learn potentially non-monotonic preferences.
arXiv Detail & Related papers (2024-09-04T14:36:20Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Decision-focused predictions via pessimistic bilevel optimization: a computational study [0.7499722271664147]
Uncertainty in optimization parameters is an important and longstanding challenge.
We build predictive models that measure a emphregret measure on decisions taken with them.
We show various computational techniques to achieve tractability.
arXiv Detail & Related papers (2023-12-29T15:05:00Z) - Predict-Then-Optimize by Proxy: Learning Joint Models of Prediction and
Optimization [59.386153202037086]
Predict-Then- framework uses machine learning models to predict unknown parameters of an optimization problem from features before solving.
This approach can be inefficient and requires handcrafted, problem-specific rules for backpropagation through the optimization step.
This paper proposes an alternative method, in which optimal solutions are learned directly from the observable features by predictive models.
arXiv Detail & Related papers (2023-11-22T01:32:06Z) - DADO -- Low-Cost Query Strategies for Deep Active Design Optimization [1.6298921134113031]
We present two selection strategies for self-optimization to reduce the computational cost in multi-objective design optimization problems.
We evaluate our strategies on a large dataset from the domain of fluid dynamics and introduce two new evaluation metrics to determine the model's performance.
arXiv Detail & Related papers (2023-07-10T13:01:27Z) - A Note on Task-Aware Loss via Reweighing Prediction Loss by
Decision-Regret [11.57423546614283]
We propose a decision-aware version of predict-then-optimize.
We reweigh the prediction error by the decision regret incurred by an (unweighted) pilot estimator of costs.
We show that this approach can lead to improvements over a "predict-then-optimize" framework.
arXiv Detail & Related papers (2022-11-09T18:59:35Z) - Efficient Learning of Decision-Making Models: A Penalty Block Coordinate
Descent Algorithm for Data-Driven Inverse Optimization [12.610576072466895]
We consider the inverse problem where we use prior decision data to uncover the underlying decision-making process.
This statistical learning problem is referred to as data-driven inverse optimization.
We propose an efficient block coordinate descent-based algorithm to solve large problem instances.
arXiv Detail & Related papers (2022-10-27T12:52:56Z) - SimPO: Simultaneous Prediction and Optimization [3.181417685380586]
We propose a formulation for the Simultaneous Prediction and Optimization (SimPO) framework.
This framework introduces the use of a joint weighted loss of a decision-driven predictive ML model and an optimization objective function.
arXiv Detail & Related papers (2022-03-31T20:01:36Z) - Learning MDPs from Features: Predict-Then-Optimize for Sequential
Decision Problems by Reinforcement Learning [52.74071439183113]
We study the predict-then-optimize framework in the context of sequential decision problems (formulated as MDPs) solved via reinforcement learning.
Two significant computational challenges arise in applying decision-focused learning to MDPs.
arXiv Detail & Related papers (2021-06-06T23:53:31Z) - Fast Rates for Contextual Linear Optimization [52.39202699484225]
We show that a naive plug-in approach achieves regret convergence rates that are significantly faster than methods that directly optimize downstream decision performance.
Our results are overall positive for practice: predictive models are easy and fast to train using existing tools, simple to interpret, and, as we show, lead to decisions that perform very well.
arXiv Detail & Related papers (2020-11-05T18:43:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.