NC-DRE: Leveraging Non-entity Clue Information for Document-level
Relation Extraction
- URL: http://arxiv.org/abs/2204.00255v1
- Date: Fri, 1 Apr 2022 07:30:26 GMT
- Title: NC-DRE: Leveraging Non-entity Clue Information for Document-level
Relation Extraction
- Authors: Liang Zhang, Yidong Cheng
- Abstract summary: Document-level relation extraction (RE) requires reasoning on multiple entities in different sentences to identify complex inter-sentence relations.
Previous studies usually employ graph neural networks (GNN) to perform inference upon heterogeneous document-graphs.
We propose a novel graph-based model NC-DRE that introduces decoder-to-encoder attention mechanism to leverage Non-entity Clue information for Document-level Relation Extraction.
- Score: 3.276435438007766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Document-level relation extraction (RE), which requires reasoning on multiple
entities in different sentences to identify complex inter-sentence relations,
is more challenging than sentence-level RE. To extract the complex
inter-sentence relations, previous studies usually employ graph neural networks
(GNN) to perform inference upon heterogeneous document-graphs. Despite their
great successes, these graph-based methods, which normally only consider the
words within the mentions in the process of building graphs and reasoning, tend
to ignore the non-entity clue words that are not in the mentions but provide
important clue information for relation reasoning. To alleviate this problem,
we treat graph-based document-level RE models as an encoder-decoder framework,
which typically uses a pre-trained language model as the encoder and a GNN
model as the decoder, and propose a novel graph-based model NC-DRE that
introduces decoder-to-encoder attention mechanism to leverage Non-entity Clue
information for Document-level Relation Extraction.
Related papers
- Scalable Weibull Graph Attention Autoencoder for Modeling Document Networks [50.42343781348247]
We develop a graph Poisson factor analysis (GPFA) which provides analytic conditional posteriors to improve the inference accuracy.
We also extend GPFA to a multi-stochastic-layer version named graph Poisson gamma belief network (GPGBN) to capture the hierarchical document relationships at multiple semantic levels.
Our models can extract high-quality hierarchical latent document representations and achieve promising performance on various graph analytic tasks.
arXiv Detail & Related papers (2024-10-13T02:22:14Z) - GEGA: Graph Convolutional Networks and Evidence Retrieval Guided Attention for Enhanced Document-level Relation Extraction [15.246183329778656]
Document-level relation extraction (DocRE) aims to extract relations between entities from unstructured document text.
To overcome these challenges, we propose GEGA, a novel model for DocRE.
We evaluate the GEGA model on three widely used benchmark datasets: DocRED, Re-DocRED, and Revisit-DocRED.
arXiv Detail & Related papers (2024-07-31T07:15:33Z) - Document-level Relation Extraction with Cross-sentence Reasoning Graph [14.106582119686635]
Relation extraction (RE) has recently moved from the sentence-level to document-level.
We propose a novel document-level RE model with a GRaph information Aggregation and Cross-sentence Reasoning network (GRACR)
Experimental results show GRACR achieves excellent performance on two public datasets of document-level RE.
arXiv Detail & Related papers (2023-03-07T14:14:12Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
We focus on leveraging citation graphs to improve scientific paper extractive summarization under different settings.
Preliminary results demonstrate that citation graph is helpful even in a simple unsupervised framework.
Motivated by this, we propose a Graph-based Supervised Summarization model (GSS) to achieve more accurate results on the task when large-scale labeled data are available.
arXiv Detail & Related papers (2022-12-08T11:53:12Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z) - BASS: Boosting Abstractive Summarization with Unified Semantic Graph [49.48925904426591]
BASS is a framework for Boosting Abstractive Summarization based on a unified Semantic graph.
A graph-based encoder-decoder model is proposed to improve both the document representation and summary generation process.
Empirical results show that the proposed architecture brings substantial improvements for both long-document and multi-document summarization tasks.
arXiv Detail & Related papers (2021-05-25T16:20:48Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
Existing representation learning methods in graph convolutional networks are mainly designed by describing the neighborhood of each node as a perceptual whole.
We propose a Semantic Graph Convolutional Networks (SGCN) that explores the implicit semantics by learning latent semantic-paths in graphs.
arXiv Detail & Related papers (2021-01-16T16:18:43Z) - Neural Topic Modeling by Incorporating Document Relationship Graph [18.692100955163713]
Graph Topic Model (GTM) is a GNN based neural topic model that represents a corpus as a document relationship graph.
Documents and words in the corpus become nodes in the graph and are connected based on document-word co-occurrences.
arXiv Detail & Related papers (2020-09-29T12:45:55Z) - Reasoning with Latent Structure Refinement for Document-Level Relation
Extraction [20.308845516900426]
We propose a novel model that empowers the relational reasoning across sentences by automatically inducing the latent document-level graph.
Specifically, our model achieves an F1 score of 59.05 on a large-scale document-level dataset (DocRED)
arXiv Detail & Related papers (2020-05-13T13:36:09Z) - Knowledge Graph-Augmented Abstractive Summarization with Semantic-Driven
Cloze Reward [42.925345819778656]
We present ASGARD, a novel framework for Abstractive Summarization with Graph-Augmentation and semantic-driven RewarD.
We propose the use of dual encoders---a sequential document encoder and a graph-structured encoder---to maintain the global context and local characteristics of entities.
Results show that our models produce significantly higher ROUGE scores than a variant without knowledge graph as input on both New York Times and CNN/Daily Mail datasets.
arXiv Detail & Related papers (2020-05-03T18:23:06Z) - Semantic Graphs for Generating Deep Questions [98.5161888878238]
We propose a novel framework which first constructs a semantic-level graph for the input document and then encodes the semantic graph by introducing an attention-based GGNN (Att-GGNN)
On the HotpotQA deep-question centric dataset, our model greatly improves performance over questions requiring reasoning over multiple facts, leading to state-of-the-art performance.
arXiv Detail & Related papers (2020-04-27T10:52:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.