Robust and Accurate -- Compositional Architectures for Randomized
Smoothing
- URL: http://arxiv.org/abs/2204.00487v1
- Date: Fri, 1 Apr 2022 14:46:25 GMT
- Title: Robust and Accurate -- Compositional Architectures for Randomized
Smoothing
- Authors: Mikl\'os Z. Horv\'ath, Mark Niklas M\"uller, Marc Fischer, Martin
Vechev
- Abstract summary: We propose a compositional architecture, ACES, which certifiably decides on a per-sample basis whether to use a smoothed model yielding predictions with guarantees or a more accurate standard model without guarantees.
This, in contrast to prior approaches, enables both high standard accuracies and significant provable robustness.
- Score: 5.161531917413708
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Randomized Smoothing (RS) is considered the state-of-the-art approach to
obtain certifiably robust models for challenging tasks. However, current RS
approaches drastically decrease standard accuracy on unperturbed data, severely
limiting their real-world utility. To address this limitation, we propose a
compositional architecture, ACES, which certifiably decides on a per-sample
basis whether to use a smoothed model yielding predictions with guarantees or a
more accurate standard model without guarantees. This, in contrast to prior
approaches, enables both high standard accuracies and significant provable
robustness. On challenging tasks such as ImageNet, we obtain, e.g., $80.0\%$
natural accuracy and $28.2\%$ certifiable accuracy against $\ell_2$
perturbations with $r=1.0$. We release our code and models at
https://github.com/eth-sri/aces.
Related papers
- UncertaintyRAG: Span-Level Uncertainty Enhanced Long-Context Modeling for Retrieval-Augmented Generation [93.38604803625294]
We present UncertaintyRAG, a novel approach for long-context Retrieval-Augmented Generation (RAG)
We use Signal-to-Noise Ratio (SNR)-based span uncertainty to estimate similarity between text chunks.
UncertaintyRAG outperforms baselines by 2.03% on LLaMA-2-7B, achieving state-of-the-art results.
arXiv Detail & Related papers (2024-10-03T17:39:38Z) - Rigorous Probabilistic Guarantees for Robust Counterfactual Explanations [80.86128012438834]
We show for the first time that computing the robustness of counterfactuals with respect to plausible model shifts is NP-complete.
We propose a novel probabilistic approach which is able to provide tight estimates of robustness with strong guarantees.
arXiv Detail & Related papers (2024-07-10T09:13:11Z) - Certified PEFTSmoothing: Parameter-Efficient Fine-Tuning with Randomized Smoothing [6.86204821852287]
Randomized smoothing is the primary certified robustness method for accessing the robustness of deep learning models to adversarial perturbations in the l2-norm.
A notable constraint limiting widespread adoption is the necessity to retrain base models entirely from scratch to attain a robust version.
This is because the base model fails to learn the noise-augmented data distribution to give an accurate vote.
Inspired by recent large model training procedures, we explore an alternative way named PEFTSmoothing to adapt the base model to learn the noise-augmented data.
arXiv Detail & Related papers (2024-04-08T09:38:22Z) - Adaptive Certified Training: Towards Better Accuracy-Robustness
Tradeoffs [17.46692880231195]
We propose a novel certified training method based on a key insight that training with adaptive certified radii helps to improve the accuracy and robustness of the model.
We demonstrate the effectiveness of the proposed method on MNIST, CIFAR-10, and TinyImageNet datasets.
arXiv Detail & Related papers (2023-07-24T18:59:46Z) - Improving the Accuracy-Robustness Trade-Off of Classifiers via Adaptive Smoothing [9.637143119088426]
We show that a robust base classifier's confidence difference for correct and incorrect examples is the key to this improvement.
We adapt an adversarial input detector into a mixing network that adaptively adjusts the mixture of the two base models.
The proposed flexible method, termed "adaptive smoothing", can work in conjunction with existing or even future methods that improve clean accuracy, robustness, or adversary detection.
arXiv Detail & Related papers (2023-01-29T22:05:28Z) - Improved, Deterministic Smoothing for L1 Certified Robustness [119.86676998327864]
We propose a non-additive and deterministic smoothing method, Deterministic Smoothing with Splitting Noise (DSSN)
In contrast to uniform additive smoothing, the SSN certification does not require the random noise components used to be independent.
This is the first work to provide deterministic "randomized smoothing" for a norm-based adversarial threat model.
arXiv Detail & Related papers (2021-03-17T21:49:53Z) - Insta-RS: Instance-wise Randomized Smoothing for Improved Robustness and
Accuracy [9.50143683501477]
Insta-RS is a multiple-start search algorithm that assigns customized Gaussian variances to test examples.
Insta-RS Train is a novel two-stage training algorithm that adaptively adjusts and customizes the noise level of each training example.
We show that our method significantly enhances the average certified radius (ACR) as well as the clean data accuracy.
arXiv Detail & Related papers (2021-03-07T19:46:07Z) - Adversarial robustness via robust low rank representations [44.41534627858075]
In this work we highlight the benefits of natural low rank representations that often exist for real data such as images.
We exploit low rank data representations to provide improved guarantees over state-of-the-art randomized smoothing-based approaches.
Our second contribution is for the more challenging setting of certified robustness to perturbations measured in $ell_infty$ norm.
arXiv Detail & Related papers (2020-07-13T17:57:00Z) - Consistency Regularization for Certified Robustness of Smoothed
Classifiers [89.72878906950208]
A recent technique of randomized smoothing has shown that the worst-case $ell$-robustness can be transformed into the average-case robustness.
We found that the trade-off between accuracy and certified robustness of smoothed classifiers can be greatly controlled by simply regularizing the prediction consistency over noise.
arXiv Detail & Related papers (2020-06-07T06:57:43Z) - Towards Assessment of Randomized Smoothing Mechanisms for Certifying
Adversarial Robustness [50.96431444396752]
We argue that the main difficulty is how to assess the appropriateness of each randomized mechanism.
We first conclude that the Gaussian mechanism is indeed an appropriate option to certify $ell$-norm.
Surprisingly, we show that the Gaussian mechanism is also an appropriate option for certifying $ell_infty$-norm, instead of the Exponential mechanism.
arXiv Detail & Related papers (2020-05-15T03:54:53Z) - Black-Box Certification with Randomized Smoothing: A Functional
Optimization Based Framework [60.981406394238434]
We propose a general framework of adversarial certification with non-Gaussian noise and for more general types of attacks.
Our proposed methods achieve better certification results than previous works and provide a new perspective on randomized smoothing certification.
arXiv Detail & Related papers (2020-02-21T07:52:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.