論文の概要: A Differential Evolution-Enhanced Latent Factor Analysis Model for
High-dimensional and Sparse Data
- arxiv url: http://arxiv.org/abs/2204.00861v1
- Date: Sat, 2 Apr 2022 13:41:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-07 06:59:35.435354
- Title: A Differential Evolution-Enhanced Latent Factor Analysis Model for
High-dimensional and Sparse Data
- Title(参考訳): 高次元・スパースデータに対する差分進化強化潜在因子分析モデル
- Authors: Jia Chen, Di Wu, and Xin Luo
- Abstract要約: 本稿では,PLFAモデルにより最適化された潜在因子を改良するための逐次群差分進化(SGDE)アルゴリズムを提案する。
4つのHiDS行列の実験で示されたように、SGDE-PLFAモデルは最先端のモデルよりも優れている。
- 参考スコア(独自算出の注目度): 11.164847043777703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional and sparse (HiDS) matrices are frequently adopted to
describe the complex relationships in various big data-related systems and
applications. A Position-transitional Latent Factor Analysis (PLFA) model can
accurately and efficiently represent an HiDS matrix. However, its involved
latent factors are optimized by stochastic gradient descent with the specific
gradient direction step-by-step, which may cause a suboptimal solution. To
address this issue, this paper proposes a Sequential-Group-Differential-
Evolution (SGDE) algorithm to refine the latent factors optimized by a PLFA
model, thereby achieving a highly-accurate SGDE-PLFA model to HiDS matrices. As
demonstrated by the experiments on four HiDS matrices, a SGDE-PLFA model
outperforms the state-of-the-art models.
- Abstract(参考訳): 高次元およびスパース(hid)行列は、様々なビッグデータ関連システムやアプリケーションにおける複雑な関係を記述するために頻繁に用いられる。
位置遷移潜在因子分析(PLFA)モデルは、HiDS行列を正確かつ効率的に表すことができる。
しかしながら、その潜伏因子は、特定の勾配方向が段階的に進行する確率的勾配降下によって最適化され、亜最適解を引き起こす可能性がある。
本稿では,PLFAモデルにより最適化された潜在因子を改良し,高精度なSGDE-PLFAモデルをHiDS行列に適用するためのSGDEアルゴリズムを提案する。
4つのHiDS行列の実験で示されたように、SGDE-PLFAモデルは最先端モデルよりも優れている。
関連論文リスト
- Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Synergistic eigenanalysis of covariance and Hessian matrices for enhanced binary classification [72.77513633290056]
本稿では, 学習モデルを用いて評価したヘッセン行列をトレーニングセットで評価した共分散行列の固有解析と, 深層学習モデルで評価したヘッセン行列を組み合わせた新しい手法を提案する。
本手法は複雑なパターンと関係を抽出し,分類性能を向上する。
論文 参考訳(メタデータ) (2024-02-14T16:10:42Z) - Large-scale gradient-based training of Mixtures of Factor Analyzers [67.21722742907981]
本稿では,勾配降下による高次元学習を効果的に行うための理論解析と新しい手法の両立に寄与する。
MFAトレーニングと推論/サンプリングは,学習終了後の行列逆変換を必要としない精度行列に基づいて行うことができることを示す。
理論解析と行列の他に,SVHNやMNISTなどの画像データセットにMFAを適用し,サンプル生成と外乱検出を行う能力を示す。
論文 参考訳(メタデータ) (2023-08-26T06:12:33Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Fast Latent Factor Analysis via a Fuzzy PID-Incorporated Stochastic
Gradient Descent Algorithm [1.984879854062214]
勾配降下(SGD)に基づく潜在因子分析モデルは,HDI行列から貴重な情報を抽出するのに極めて有効である。
標準SGDアルゴリズムは、過去の更新情報を考慮せずに、現在のインスタンスエラーの勾配に依存する潜在因子を学習する。
本稿では, ファジィPIDを組み込んだSGDアルゴリズムを2つのアイデアで提案する: 1) 過去の更新情報をPIDの原則に従って効率的な方法で再設計し, 2) ハイパーラーニングを実装し, ファジィ規則に従う適応を得る。
論文 参考訳(メタデータ) (2023-03-07T14:51:09Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
複雑なモデルにおける変分推論(VI)の最適化アルゴリズムを提案する。
本研究では,変分行列上の正定値制約を満たすガウス変分推論の効率的なアルゴリズムを開発した。
MGVBPはブラックボックスの性質のため、複雑なモデルにおけるVIのための準備が整ったソリューションである。
論文 参考訳(メタデータ) (2022-10-26T10:12:31Z) - Adaptive Latent Factor Analysis via Generalized Momentum-Incorporated
Particle Swarm Optimization [6.2303427193075755]
勾配降下(SGD)アルゴリズムは,高次元および不完全行列上に潜在因子分析(LFA)モデルを構築するための効果的な学習戦略である。
粒子群最適化(PSO)アルゴリズムは、SGDベースのLFAモデルのハイパーパラメータ(学習率と正規化係数、自己適応)を作成するために一般的に用いられる。
本論文は, 各粒子の進化過程に, 早期収束を避けるために, より歴史的情報を取り入れたものである。
論文 参考訳(メタデータ) (2022-08-04T03:15:07Z) - An Adaptive Alternating-direction-method-based Nonnegative Latent Factor
Model [2.857044909410376]
交互方向法に基づく非負潜在因子モデルにより、高次元および不完全行列への効率的な表現学習を行うことができる。
本稿では,超パラメータ適応を粒子群最適化の原理に従って実装した適応交互方向法に基づく非負遅延因子モデルを提案する。
産業応用によって生成される非負のHDI行列に関する実証的研究は、A2NLFが計算および記憶効率においていくつかの最先端モデルより優れており、HDI行列の欠落データに対する高い競合推定精度を維持していることを示している。
論文 参考訳(メタデータ) (2022-04-11T03:04:26Z) - Model-based Clustering using Automatic Differentiation: Confronting
Misspecification and High-Dimensional Data [6.053629733936546]
ガウス混合モデルを用いたモデルベースクラスタリングの実用上重要な2つの事例について検討する。
本研究では,EMのクラスタリング性能が,不特定な場合のグラディエントDescentと比較して向上していることを示す。
そこで本稿では,一対の部品間のKulback Leibler分散に基づく新たなペナルティ項を提案する。
論文 参考訳(メタデータ) (2020-07-08T10:56:05Z) - Learning Bijective Feature Maps for Linear ICA [73.85904548374575]
画像データに適した既存の確率的深層生成モデル (DGM) は, 非線形ICAタスクでは不十分であることを示す。
そこで本研究では,2次元特徴写像と線形ICAモデルを組み合わせることで,高次元データに対する解釈可能な潜在構造を学習するDGMを提案する。
画像上のフローベースモデルや線形ICA、変分オートエンコーダよりも、高速に収束し、訓練が容易なモデルを作成し、教師なしの潜在因子発見を実現する。
論文 参考訳(メタデータ) (2020-02-18T17:58:07Z) - A Support Detection and Root Finding Approach for Learning
High-dimensional Generalized Linear Models [10.103666349083165]
本研究では,高次元一般化線形モデルの学習を支援する支援検出法とルート探索法を開発した。
提案手法の利点を説明するため,シミュレーションと実データ解析を行った。
論文 参考訳(メタデータ) (2020-01-16T14:35:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。