論文の概要: A Support Detection and Root Finding Approach for Learning
High-dimensional Generalized Linear Models
- arxiv url: http://arxiv.org/abs/2001.05819v1
- Date: Thu, 16 Jan 2020 14:35:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-10 23:53:51.604256
- Title: A Support Detection and Root Finding Approach for Learning
High-dimensional Generalized Linear Models
- Title(参考訳): 高次元一般化線形モデル学習のための支援検出とルート探索手法
- Authors: Jian Huang, Yuling Jiao, Lican Kang, Jin Liu, Yanyan Liu, Xiliang Lu
- Abstract要約: 本研究では,高次元一般化線形モデルの学習を支援する支援検出法とルート探索法を開発した。
提案手法の利点を説明するため,シミュレーションと実データ解析を行った。
- 参考スコア(独自算出の注目度): 10.103666349083165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature selection is important for modeling high-dimensional data, where the
number of variables can be much larger than the sample size. In this paper, we
develop a support detection and root finding procedure to learn the high
dimensional sparse generalized linear models and denote this method by GSDAR.
Based on the KKT condition for $\ell_0$-penalized maximum likelihood
estimations, GSDAR generates a sequence of estimators iteratively.
Under some restricted invertibility conditions on the maximum likelihood
function and sparsity assumption on the target coefficients, the errors of the
proposed estimate decays exponentially to the optimal order. Moreover, the
oracle estimator can be recovered if the target signal is stronger than the
detectable level.
We conduct simulations and real data analysis to illustrate the advantages of
our proposed method over several existing methods, including Lasso and MCP.
- Abstract(参考訳): 特徴の選択は、変数の数がサンプルサイズよりもはるかに大きい高次元データのモデリングにおいて重要である。
本稿では,高次元スパース一般化線形モデルを学ぶための支援検出とルート探索手法を開発し,gsdarを用いてこの手法を示す。
GSDARは、$\ell_0$-penalized maximum max estimationsのKKT条件に基づいて、反復的に推定子の列を生成する。
目標係数の最大度関数とスパーシティ仮定に関するいくつかの制限された可逆性条件の下では、提案する推定誤差は最適次数に指数関数的に減少する。
さらに、ターゲット信号が検出可能なレベルよりも強い場合、oracle estimatorを回収することができる。
本稿では,Lasso や MCP などの既存手法に対する提案手法の利点を説明するため,シミュレーションと実データ解析を行う。
関連論文リスト
- Bayesian Estimation and Tuning-Free Rank Detection for Probability Mass Function Tensors [17.640500920466984]
本稿では,関節のPMFを推定し,そのランクを観測データから自動的に推定する新しい枠組みを提案する。
我々は、様々なモデルパラメータの後方分布を近似するために、変分推論(VI)に基づく決定論的解を導出し、さらに、変分推論(SVI)を利用して、VVIベースのアプローチのスケーラブルバージョンを開発する。
合成データと実映画レコメンデーションデータの両方を含む実験は、推定精度、自動ランク検出、計算効率の点で、VVIおよびSVIベースの手法の利点を示している。
論文 参考訳(メタデータ) (2024-10-08T20:07:49Z) - Maximum a Posteriori Estimation for Linear Structural Dynamics Models Using Bayesian Optimization with Rational Polynomial Chaos Expansions [0.01578888899297715]
本稿では,MAP推定のための既存のスパースベイズ学習手法の拡張を提案する。
ベイズ最適化手法を導入し,実験設計を適応的に強化する。
疎性誘導学習と実験設計を組み合わせることで,モデル評価の回数を効果的に削減する。
論文 参考訳(メタデータ) (2024-08-07T06:11:37Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation [24.558241146742205]
本研究では,データテンソルの展開のスペクトルの多次元的挙動を特徴付け,信号の主方向の検出性を決定する関連信号-雑音比を示す。
その結果,非自明な状態下でのマルチリニアSVD (MLSVD) の再構成性能を正確に予測することができた。
論文 参考訳(メタデータ) (2024-02-05T16:38:30Z) - Conditional Korhunen-Lo\'{e}ve regression model with Basis Adaptation
for high-dimensional problems: uncertainty quantification and inverse
modeling [62.997667081978825]
本稿では,物理系の観測可能な応答のサロゲートモデルの精度を向上させる手法を提案する。
本研究では,定常水理応答のBasis Adaptation (BA)法による代理モデル構築に提案手法を適用した。
論文 参考訳(メタデータ) (2023-07-05T18:14:38Z) - Approximate Message Passing for the Matrix Tensor Product Model [8.206394018475708]
本稿では,行列テンソル積モデルに対する近似メッセージパッシング(AMP)アルゴリズムの提案と解析を行う。
非可分関数に対する収束定理に基づいて、非可分関数に対する状態発展を証明する。
我々は、この状態進化結果を利用して、関心の信号の回復に必要な十分な条件を提供する。
論文 参考訳(メタデータ) (2023-06-27T16:03:56Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
我々は,モンテカルロサンプリングと反復線形解法を組み合わせた確率的アンローリングを導入し,行列逆転を回避した。
理論的解析により,解法の繰り返しによる解法の解法と逆転が最大値推定の勾配推定を高速化することを示した。
シミュレーションおよび実データ実験において、確率的アンロールは、モデル性能の損失を最小限に抑えながら、勾配EMよりも桁違いに高速な潜在ガウスモデルを学習することを示した。
論文 参考訳(メタデータ) (2023-06-05T21:08:34Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
疎高次元線形回帰に対する計算効率が高く強力なベイズ的手法を提案する。
パラメータに関する最小の事前仮定は、プラグイン経験的ベイズ推定(英語版)を用いて用いられる。
提案手法はRパッケージプローブに実装されている。
論文 参考訳(メタデータ) (2022-09-16T19:15:50Z) - Generative Principal Component Analysis [47.03792476688768]
生成的モデリング仮定を用いた主成分分析の問題点を考察する。
鍵となる仮定は、基礎となる信号は、$k$次元の入力を持つ$L$-Lipschitz連続生成モデルの範囲に近いことである。
本稿では,2次推定器を提案し,検体数として$m$の次数$sqrtfracklog Lm$の統計率を示す。
論文 参考訳(メタデータ) (2022-03-18T01:48:16Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Improved guarantees and a multiple-descent curve for Column Subset
Selection and the Nystr\"om method [76.73096213472897]
我々は,データ行列のスペクトル特性を利用して近似保証を改良する手法を開発した。
我々のアプローチは、特異値減衰の既知の速度を持つデータセットのバウンダリが大幅に向上する。
RBFパラメータを変更すれば,改良された境界線と多重発振曲線の両方を実データセット上で観測できることが示される。
論文 参考訳(メタデータ) (2020-02-21T00:43:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。