論文の概要: Dynamic physical activity recommendation on personalised mobile health
information service: A deep reinforcement learning approach
- arxiv url: http://arxiv.org/abs/2204.00961v1
- Date: Sun, 3 Apr 2022 01:19:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-06 10:04:54.608648
- Title: Dynamic physical activity recommendation on personalised mobile health
information service: A deep reinforcement learning approach
- Title(参考訳): 個人化モバイル健康情報サービスにおける身体活動の動的推奨:深層強化学習アプローチ
- Authors: Ji Fang, Vincent CS Lee, Haiyan Wang
- Abstract要約: mHealth Information Serviceは、身体活動を増やし、健康を改善したいユーザーにとって、医療管理をより簡単にする。
現在の健康サービスシステムは、通常、ユーザー固有のニーズを満たさない固定された運動計画に基づいたレコメンデーションを提供する。
本稿では、データ駆動モデルを確立することにより、個人化されたmHealth情報サービスにおいて、身体活動の推奨決定を効果的に行う方法を模索する。
- 参考スコア(独自算出の注目度): 14.517651277594796
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mobile health (mHealth) information service makes healthcare management
easier for users, who want to increase physical activity and improve health.
However, the differences in activity preference among the individual, adherence
problems, and uncertainty of future health outcomes may reduce the effect of
the mHealth information service. The current health service system usually
provides recommendations based on fixed exercise plans that do not satisfy the
user specific needs. This paper seeks an efficient way to make physical
activity recommendation decisions on physical activity promotion in
personalised mHealth information service by establishing data-driven model. In
this study, we propose a real-time interaction model to select the optimal
exercise plan for the individual considering the time-varying characteristics
in maximising the long-term health utility of the user. We construct a
framework for mHealth information service system comprising a personalised AI
module, which is based on the scientific knowledge about physical activity to
evaluate the individual exercise performance, which may increase the awareness
of the mHealth artificial intelligence system. The proposed deep reinforcement
learning (DRL) methodology combining two classes of approaches to improve the
learning capability for the mHealth information service system. A deep learning
method is introduced to construct the hybrid neural network combing long-short
term memory (LSTM) network and deep neural network (DNN) techniques to infer
the individual exercise behavior from the time series data. A reinforcement
learning method is applied based on the asynchronous advantage actor-critic
algorithm to find the optimal policy through exploration and exploitation.
- Abstract(参考訳): モバイルヘルス(mHealth)情報サービスは、身体活動を増やし、健康を改善したいユーザーにとって、医療管理を容易にする。
しかしながら、個人間の活動嗜好の違い、順守問題、将来の健康成果の不確実性は、mhealth情報サービスの効果を減少させる可能性がある。
現在の健康サービスシステムは、通常、ユーザ固有のニーズを満たさない固定的なエクササイズ計画に基づいて推奨を提供する。
本稿では,個人化されたmhealth情報サービスにおける身体活動促進に関する身体活動推薦決定を,データ駆動モデルの構築により効率的に行う方法を提案する。
本研究では,ユーザの長期的健康効果を最大化する上で,時間的特性を考慮した個人のための最適な運動計画を選択するためのリアルタイムインタラクションモデルを提案する。
我々は、個人化されたAIモジュールからなるmHealth情報サービスシステムのためのフレームワークを構築し、身体活動に関する科学的知識に基づいて個別の運動性能を評価し、mHealth人工知能システムの認識を高めることができる。
深層強化学習(drl)手法は,mhealth情報サービスシステムの学習能力を向上させるための2つの手法を組み合わせたものである。
長期記憶(LSTM)ネットワークと深層ニューラルネットワーク(DNN)技術を組み合わせたハイブリッドニューラルネットワークを構築し、時系列データから個別の運動行動を推定する深層学習手法を提案する。
非同期アドバンテージアクタ-クリティックアルゴリズムに基づく強化学習法を適用し,探索と搾取による最適方針を求める。
関連論文リスト
- Learning Hand State Estimation for a Light Exoskeleton [50.05509088121445]
そこで本研究では,光エクソスケトンを用いた手の状態推定手法を提案する。
本研究は,前腕の筋活動と外骨格の運動から得られる情報を用いて,手指の開度とコンプライアンスレベルを再構築する指導的アプローチを構築する。
我々のアプローチは本物の光のエクソスケルトンで検証されている。
論文 参考訳(メタデータ) (2024-11-14T09:12:38Z) - MotionRL: Align Text-to-Motion Generation to Human Preferences with Multi-Reward Reinforcement Learning [99.09906827676748]
我々は、テキスト・ツー・モーション生成タスクを最適化するために、Multi-Reward Reinforcement Learning(RL)を利用する最初のアプローチであるMotionRLを紹介する。
我々の新しいアプローチは、人間の知覚モデルに関する知識以前の人間の嗜好に基づいて、強化学習を用いて運動生成体を微調整する。
さらに、MotionRLは、テキストのアテンデンス、モーションクオリティ、人間の好みの最適性を近似する、新しい多目的最適化戦略を導入している。
論文 参考訳(メタデータ) (2024-10-09T03:27:14Z) - Automatic Identification and Visualization of Group Training Activities Using Wearable Data [7.130450173185638]
Human Activity Recognition (HAR)は、スマートウォッチのようなウェアラブルデバイスによって収集された時系列データから日々のアクティビティを特定する。
本稿では,ウェアラブルデータからアクティビティを計算,分析,識別するための包括的枠組みを提案する。
当社のアプローチは、Garmin 55スマートウォッチを6ヶ月にわたって装着した135人の兵士から収集されたデータに基づいています。
論文 参考訳(メタデータ) (2024-10-07T19:35:15Z) - Intelligent Repetition Counting for Unseen Exercises: A Few-Shot Learning Approach with Sensor Signals [0.4998632546280975]
本研究は、IMU信号の解析により、運動繰り返しを自動カウントする方法を開発した。
本稿では,深度測定に基づく数点学習手法を用いた反復カウント手法を提案する。
86.8%の確率で、28回の異なるエクササイズで1セットに10回以上の繰り返しを正確に数えることが可能である。
論文 参考訳(メタデータ) (2024-10-01T05:04:40Z) - A Graph-based Approach to Human Activity Recognition [5.323279718522213]
本稿では,リアルタイムデータセットの拡張から重要な洞察を効率的に抽出する手法を提案する。
Inertial Measurement Units (IMU) と Global Navigation Satellite Systems (GNSS) の受信機からのデータを利用することで, 競技成績を有向グラフを用いて解析することができる。
本手法はバイアスロンデータを用いて興味のある特定の点や複雑な動きのシーケンスを検出する。
論文 参考訳(メタデータ) (2024-08-19T17:51:00Z) - Rehabilitation Exercise Quality Assessment through Supervised Contrastive Learning with Hard and Soft Negatives [2.166000001057538]
運動ベースのリハビリテーションプログラムは、生活の質を高め、死亡率と再入院率を減らすのに有効であることが証明されている。
これらのプログラムは一般的に様々なエクササイズタイプを規定しており、リハビリテーションエクササイズアセスメントデータセットにおいて明確な課題となっている。
本稿では,すべての運動タイプに適用可能な単一モデルをトレーニングするための,硬質で軟質な負のサンプルを用いた教師付きコントラスト学習フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-05T08:38:25Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
我々は,対話型模倣学習と類似するが,さらに実践的な仮定の下で,非政治強化学習によってパフォーマンスが向上できることを実証する。
提案手法は,ユーザ介入信号を用いた強化学習を報奨として利用する。
このことは、インタラクティブな模倣学習において介入する専門家がほぼ最適であるべきだという仮定を緩和し、アルゴリズムが潜在的に最適でない人間の専門家よりも改善される行動を学ぶことを可能にする。
論文 参考訳(メタデータ) (2023-11-21T21:05:21Z) - ALP: Action-Aware Embodied Learning for Perception [60.64801970249279]
認知のための行動認識型身体学習(ALP)について紹介する。
ALPは、強化学習ポリシーと逆ダイナミクス予測目標を最適化することにより、行動情報を表現学習に組み込む。
ALPは、複数の下流認識タスクにおいて、既存のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-16T21:51:04Z) - Privacy-Preserving Personalized Fitness Recommender System (P3FitRec): A
Multi-level Deep Learning Approach [6.647564421295215]
プライバシーに配慮したパーソナライズされたフィットネスレコメンデーションシステムを提案する。
大規模な実フィットネスデータセットから重要な特徴を学習する多層ディープラーニングフレームワークを導入する。
本手法は,センサデータからユーザのフィットネス特性を推定することによりパーソナライズを実現する。
論文 参考訳(メタデータ) (2022-03-23T05:27:35Z) - Personalized Rehabilitation Robotics based on Online Learning Control [62.6606062732021]
本稿では,各ユーザに対して実行時の制御力をパーソナライズ可能な,新しいオンライン学習制御アーキテクチャを提案する。
提案手法を,学習コントローラがパーソナライズされた制御を提供するとともに,安全な相互作用力も得られる実験ユーザスタディで評価した。
論文 参考訳(メタデータ) (2021-10-01T15:28:44Z) - Generative Adversarial Reward Learning for Generalized Behavior Tendency
Inference [71.11416263370823]
ユーザの行動嗜好モデルのための生成的逆強化学習を提案する。
我々のモデルは,差別的アクター批判ネットワークとWasserstein GANに基づいて,ユーザの行動から報酬を自動的に学習することができる。
論文 参考訳(メタデータ) (2021-05-03T13:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。