論文の概要: Learning-Based Approaches for Graph Problems: A Survey
- arxiv url: http://arxiv.org/abs/2204.01057v1
- Date: Sun, 3 Apr 2022 11:54:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-04-06 08:17:12.579893
- Title: Learning-Based Approaches for Graph Problems: A Survey
- Title(参考訳): グラフ問題に対する学習に基づくアプローチ:調査
- Authors: Kai Siong Yow and Siqiang Luo
- Abstract要約: 本稿では,従来のグラフ問題を中心に,これらの問題に対処するための学習ベースアプローチを提案する。
それぞれのフレームワークの概要を論じ,フレームワークの設計と性能に基づいて分析を行う。
- 参考スコア(独自算出の注目度): 13.525755994926692
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Over the years, many graph problems specifically those in NP-complete are
studied by a wide range of researchers. Some famous examples include graph
colouring, travelling salesman problem and subgraph isomorphism. Most of these
problems are typically addressed by exact algorithms, approximate algorithms
and heuristics. There are however some drawback for each of these methods.
Recent studies have employed learning-based frameworks such as machine learning
techniques in solving these problems, given that they are useful in discovering
new patterns in structured data that can be represented using graphs. This
research direction has successfully attracted a considerable amount of
attention. In this survey, we provide a systematic review mainly on classic
graph problems in which learning-based approaches have been proposed in
addressing the problems. We discuss the overview of each framework, and provide
analyses based on the design and performance of the framework. Some potential
research questions are also suggested. Ultimately, this survey gives a clearer
insight and can be used as a stepping stone to the research community in
studying problems in this field.
- Abstract(参考訳): 長年にわたり、NP完全であるグラフ問題の多くは、幅広い研究者によって研究されてきた。
有名な例としては、グラフ彩色、巡回セールスマン問題、部分グラフ同型などがある。
これらの問題の多くは、通常、厳密なアルゴリズム、近似アルゴリズム、ヒューリスティックスによって解決される。
しかし、これらのメソッドにはいくつかの欠点がある。
最近の研究では、グラフを使って表現できる構造化データの新しいパターンを見つけるのに役立つため、これらの問題を解決するために機械学習技術のような学習ベースのフレームワークが採用されている。
この研究の方向性は、かなりの注目を集めた。
本調査では,従来のグラフ問題を中心に,学習に基づくアプローチが問題に対処するための体系的な検討を行っている。
本稿では,各フレームワークの概要を説明し,フレームワークの設計と性能に関する分析を行う。
潜在的な研究課題も提案されている。
究極的には、この調査はより明確な洞察を与え、この分野の問題の研究における研究コミュニティの足掛かりとして使用できる。
関連論文リスト
- Exploring Graph Classification Techniques Under Low Data Constraints: A
Comprehensive Study [0.0]
ノードとエッジの摂動、グラフの粗大化、グラフ生成など、グラフデータの増大のためのさまざまなテクニックをカバーしている。
本稿は、これらの領域を深く探求し、さらに下位分類に着目する。
低データシナリオで直面するグラフ処理問題の解決に使用できる、幅広いテクニックの配列を提供する。
論文 参考訳(メタデータ) (2023-11-21T17:23:05Z) - State of the Art and Potentialities of Graph-level Learning [54.68482109186052]
グラフレベルの学習は、比較、回帰、分類など、多くのタスクに適用されている。
グラフの集合を学習する伝統的なアプローチは、サブストラクチャのような手作りの特徴に依存している。
ディープラーニングは、機能を自動的に抽出し、グラフを低次元表現に符号化することで、グラフレベルの学習をグラフの規模に適応させるのに役立っている。
論文 参考訳(メタデータ) (2023-01-14T09:15:49Z) - A Survey of Deep Graph Clustering: Taxonomy, Challenge, Application, and
Open Resource [87.7460720701592]
本稿では, この分野における公式定義, 評価, 開発について紹介する。
ディープグラフクラスタリング手法の分類は,グラフタイプ,ネットワークアーキテクチャ,学習パラダイム,クラスタリング手法など,4つの異なる基準に基づいて提示される。
コンピュータビジョン、自然言語処理、レコメンデーションシステム、ソーシャルネットワーク分析、バイオインフォマティクス、医学を含む6分野におけるディープグラフクラスタリング手法の適用について述べる。
論文 参考訳(メタデータ) (2022-11-23T11:31:11Z) - Learning node embeddings via summary graphs: a brief theoretical
analysis [55.25628709267215]
グラフ表現学習は多くのグラフマイニングアプリケーションにおいて重要な役割を果たすが、大規模なグラフの埋め込みを学習することは依然として問題である。
最近の研究は、グラフの要約(つまり、より小さな要約グラフへの埋め込みを学習し、元のグラフのノード埋め込みを復元することでスケーラビリティを向上させる。
本稿では,導入したカーネル行列に基づく3つの特定の埋め込み学習手法について,詳細な理論的解析を行う。
論文 参考訳(メタデータ) (2022-07-04T04:09:50Z) - Graphon based Clustering and Testing of Networks: Algorithms and Theory [11.3700474413248]
ネットワークに価値のあるデータは、幅広いアプリケーションで遭遇し、学習の課題を提起する。
本稿では,2つのクラスタリングアルゴリズムについて述べる。
さらに、グラフ2サンプルテスト問題に対する提案した距離の適用性について検討する。
論文 参考訳(メタデータ) (2021-10-06T13:14:44Z) - Graph Learning: A Survey [38.245120261668816]
本稿では,グラフ学習の現状について概観する。
グラフ信号処理,行列分解,ランダムウォーク,ディープラーニングなど,既存のグラフ学習手法の4つのカテゴリに特に注目されている。
テキスト,画像,科学,知識グラフ,最適化といった分野におけるグラフ学習アプリケーションについて検討する。
論文 参考訳(メタデータ) (2021-05-03T09:06:01Z) - Data driven algorithms for limited labeled data learning [35.193000364580975]
類似ノードが類似するラベルを持つ可能性が高いという暗黙の仮定の下で,ラベルのない例がグラフで接続されるグラフベースの手法に注目した。
本稿では,このグラフを学習するための新しいデータ駆動アプローチを提案し,分布形式とオンライン学習形式の両方において強力な形式的保証を提供する。
論文 参考訳(メタデータ) (2021-03-18T22:19:19Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Online Dense Subgraph Discovery via Blurred-Graph Feedback [87.9850024070244]
我々は高密度サブグラフ発見のための新しい学習問題を導入する。
まず,確率の高いほぼ最適解を求めるエッジ時間アルゴリズムを提案する。
そして、理論的保証のあるよりスケーラブルなアルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-06-24T11:37:33Z) - A Survey of Adversarial Learning on Graphs [59.21341359399431]
本稿では,グラフ逆学習タスクに関する既存の研究を考察し,要約する。
具体的には、グラフ解析タスクにおける攻撃と防御に関する既存の作業を調査し、統一する。
我々は、関連する評価指標の重要性を強調し、それらを総合的に調査し、要約する。
論文 参考訳(メタデータ) (2020-03-10T12:48:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。